1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bas_tet [7]
3 years ago
6

In a certain​ chemical, the ratio of zinc to copper is 3 to 17. A jar of the chemical contains 799 grams of copper. How many gra

ms of zinc does it​ contain?
Mathematics
1 answer:
dezoksy [38]3 years ago
8 0

Answer:

let's see what to do buddy...

Step-by-step explanation:

\frac{zinc}{copper} =  \frac{3}{17} \\  \\  \frac{zinc}{799} =  \frac{3}{17}

Multiply the sides of the equation by 799

zinc =  \frac{3}{17} \times 799 \\ \\ zinc =  \frac{3}{17} \times 17 \times 47 \\ \\  zinc = 3 \times 47 = 141

So A jar of the chemical contains 141 grams of <em><u>zinc</u></em>.

And we're done.

Thanks for watching buddy good luck.

♥️♥️♥️♥️♥️

You might be interested in
Two different families pay for entry into a water park.
icang [17]

Answer:

Adult ticket: $7

Child ticket: $2

Step-by-step explanation:

Set up a system of equations where a represents the cost of one adult ticket and c is the cost of one child ticket:

2a + 3c = 20

a + 4c = 15

Solve by elimination by multiplying the bottom equation by -2:

2a + 3c = 20

-2a -8c = -30

Add them together:

-5c = -10

c = 2

Now, we can plug in 2 as c to find the value of a:

2a + 3c = 20

2a + 3(2) = 20

2a + 6 = 20

2a = 14

a = 7

6 0
3 years ago
Add [1/-4 3/5] [-2/6 -2/4]
brilliants [131]

Answer:

​25/138

Step-by-step explanation:

1 Convert 4\frac{3}{5}4

​5

​

​3

​​  to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a

​c

​

​b

​​ =

​c

​

​ac+b

​​ .

\frac{1}{-(\frac{4\times 5+3}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​4×5+3

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

2 Simplify  4\times 54×5  to  2020.

\frac{1}{-(\frac{20+3}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​20+3

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

3 Simplify  20+320+3  to  2323.

\frac{1}{-(\frac{23}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

4 Simplify  \frac{2}{6}

​6

​

​2

​​   to  \frac{1}{3}

​3

​

​1

​​ .

\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{2}{4})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​3

​

​1

​​ −

​4

​

​2

​​ )

5 Simplify  \frac{2}{4}

​4

​

​2

​​   to  \frac{1}{2}

​2

​

​1

​​ .

\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{1}{2})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​3

​

​1

​​ −

​2

​

​1

​​ )

6 Find the Least Common Denominator (LCD) of \frac{1}{3},\frac{1}{2}

​3

​

​1

​​ ,

​2

​

​1

​​ . In other words, find the Least Common Multiple (LCM) of 3,23,2.

LCD = 66

7 Make the denominators the same as the LCD.

-\frac{1\times 2}{3\times 2}-\frac{1\times 3}{2\times 3}−

​3×2

​

​1×2

​​ −

​2×3

​

​1×3

​​

8 Simplify. Denominators are now the same.

-\frac{2}{6}-\frac{3}{6}−

​6

​

​2

​​ −

​6

​

​3

​​

9 Join the denominators.

\frac{-2-3}{6}

​6

​

​−2−3

​​

10 Simplify  -\frac{1}{3}-\frac{1}{2}−

​3

​

​1

​​ −

​2

​

​1

​​   to  -\frac{5}{6}−

​6

​

​5

​​ .

\frac{1}{-(\frac{23}{5})}\times \frac{-5}{6}

​−(

​5

​

​23

​​ )

​

​1

​​ ×

​6

​

​−5

​​

11 Move the negative sign to the left.

-\frac{1}{\frac{23}{5}}\times \frac{-5}{6}−

​

​5

​

​23

​​

​

​1

​​ ×

​6

​

​−5

​​

12 Invert and multiply.

-\frac{5}{23}\times \frac{-5}{6}−

​23

​

​5

​​ ×

​6

​

​−5

​​

13 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}

​b

​

​a

​​ ×

​d

​

​c

​​ =

​bd

​

​ac

​​ .

-\frac{5\times -5}{23\times 6}−

​23×6

​

​5×−5

​​

14 Simplify  5\times -55×−5  to  -25−25.

-\frac{-25}{23\times 6}−

​23×6

​

​−25

​​

15 Simplify  23\times 623×6  to  138138.

-\frac{-25}{138}−

​138

​

​−25

​​

16 Move the negative sign to the left.

-(-\frac{25}{138})−(−

​138

​

​25

​​ )

17 Remove parentheses.

\frac{25}{138}

​138

​

​25

​​

7 0
3 years ago
Suppose sin(A) = 1/4. use the trig identity sin^2(A)+cos^2(A)=1 to find cos(A) in quadrant II. around to ten-thousandth.
larisa86 [58]

In quadrant II, \cos(A) will be negative. So

\sin^2(A) + \cos^2(A) = 1 \implies \cos(A) = -\sqrt{1 - \sin^2(A)} = -\dfrac{\sqrt{15}}4 \approx \boxed{-0.9682}

8 0
2 years ago
Find the sum (6x2+8x+8)+(12x3-12x2-2x)
Maslowich
 The sum is 12x3+18x2-10x+8
7 0
3 years ago
Which of the following describes the zeroes of the graph of f(x) = –x5 + 9x4 – 18x3?
Flura [38]

Answer:

0 with multiplicity 3, 3 with multiplicity 1, and 6 with multiplicity 1.

7 0
2 years ago
Read 2 more answers
Other questions:
  • 3(x-2)*2-3? What's the y intercept x intercept vertex and the axis of symmetry ( *2 means the 2 power)
    15·1 answer
  • I need help please?!!
    8·2 answers
  • Alex buys 24 apples and when he opens it 6 apples are bad whats the perecentage of the bad apples
    12·2 answers
  • Tre determines the solution to the equation 3.57 x + 1.61 = 4.71 minus 2.63 x is x = 0.5. He verifies his solution using the ste
    14·2 answers
  • In the diagram, angle 1 = 4x + 30, and angle 3 = 2x +48.
    5·1 answer
  • Please help me with this I have school tommorow
    12·1 answer
  • Write an equation of the line that passes through the given points. (−3, 5), (0, −1)
    9·1 answer
  • Please help me with this question my sister needs help and I'm to busy
    9·2 answers
  • 4(4b-8)-3/8<br> Please help i have no idea what to do
    15·1 answer
  • Evaluate the expression: <br> -a^2 + c(a-c) - n^2 a= -3 c= -2 n= 3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!