Answer:
an antigen is toxic foreign substance, that induces an immune reaction in the body.
an antibody is a blood protein that is made in retort to the counteracting of a certain antigen.
apoptosis is the death of cells that occur normally and control part of a specific organisims growth.
an autoimmune disease is a condition in which your immune system mistakenly attack your body.
a b-cell is a type of lymphocyte that is responisble for the autoimmunity component in the adaptive immue system.
a t-cell is part of the immue system tht develop from types of stem cells in the bone marrow.
a helper is a type of white blood cells that serves as a specific and important key of immune functions.
a killer is an innate immune cell that shows a strong cytolyic function against physiologically stressed cells such as: tumor cells, and virus infected cells.
a suppressor is a lymphocyte that can suppress the antibody production by other lymphoid cells.
--
i apologize, i can get to more but i am busy.
Answer:
<h3>option :c is correct..ok</h3>
Answer:
$8.65
Step-by-step explanation:
1.25+4.75+2.50=8.5
8.5+0.056(5.6%)=8.65
Answer:

Step-by-step explanation:
Given the limit of a function expressed as
, to evaluate the following steps must be carried out.
Step 1: substitute x = 0 into the function

Step 2: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the function
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ sin(x)-tan(x)]}{\frac{d}{dx} (x^3)}\\= \lim_{ x\to \ 0} \dfrac{cos(x)-sec^2(x)}{3x^2}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20sin%28x%29-tan%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%28x%5E3%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7Bcos%28x%29-sec%5E2%28x%29%7D%7B3x%5E2%7D%5C%5C)
Step 3: substitute x = 0 into the resulting function

Step 4: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 2
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ cos(x)-sec^2(x)]}{\frac{d}{dx} (3x^2)}\\= \lim_{ x\to \ 0} \dfrac{-sin(x)-2sec^2(x)tan(x)}{6x}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20cos%28x%29-sec%5E2%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%283x%5E2%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B-sin%28x%29-2sec%5E2%28x%29tan%28x%29%7D%7B6x%7D%5C%5C)

Step 6: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 4
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ -sin(x)-2sec^2(x)tan(x)]}{\frac{d}{dx} (6x)}\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^2(x)sec^2(x)+2sec^2(x)tan(x)tan(x)]}{6}\\\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^4(x)+2sec^2(x)tan^2(x)]}{6}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20-sin%28x%29-2sec%5E2%28x%29tan%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%286x%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5B%20-cos%28x%29-2%28sec%5E2%28x%29sec%5E2%28x%29%2B2sec%5E2%28x%29tan%28x%29tan%28x%29%5D%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5B%20-cos%28x%29-2%28sec%5E4%28x%29%2B2sec%5E2%28x%29tan%5E2%28x%29%5D%7D%7B6%7D%5C%5C)
Step 7: substitute x = 0 into the resulting function in step 6
![= \dfrac{[ -cos(0)-2(sec^4(0)+2sec^2(0)tan^2(0)]}{6}\\\\= \dfrac{-1-2(0)}{6} \\= \dfrac{-1}{6}](https://tex.z-dn.net/?f=%3D%20%20%5Cdfrac%7B%5B%20-cos%280%29-2%28sec%5E4%280%29%2B2sec%5E2%280%29tan%5E2%280%29%5D%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1-2%280%29%7D%7B6%7D%20%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B6%7D)
<em>Hence the limit of the function </em>
.