Answer:
55.7%
Explanation:
The reaction that takes place is:
- 3Sn²⁺ + 2NO₃⁻ + 8H⁺ → 2NO + 3Sn⁺⁴ + 4H₂O
With the volume and concentration of NO₃⁻ solution, we can <u>calculate the moles of Sn²⁺ that reacted</u>:
- 3.67x10⁻² L * 0.0448 M = 1.64x10⁻³ mol NO₃⁻
- 1.64x10⁻³ mol NO₃⁻ *
= 2.47x10⁻³mol Sn²⁺
Now we <u>convert moles of Sn to mass</u>, using its atomic weight:
- 2.47x10⁻³mol Sn²⁺ * 118.71 g/mol = 0.293 g Sn
Finally we <u>calculate the percent by mass of Sn</u>:
- 0.293 g / 0.526 g * 100% = 55.7%
<em><u>To </u></em><em><u>dispose </u></em><em><u>natural</u></em><em><u> </u></em><em><u>waste </u></em><em><u> </u></em><em><u>:</u></em>
- <em><u>insted </u></em><em><u>of </u></em><em><u>wasting </u></em><em><u>this </u></em><em><u>natural</u></em><em><u> waste</u></em><em><u> </u></em><em><u>u </u></em><em><u>can </u></em><em><u>use </u></em><em><u>them </u></em><em><u>as </u></em><em><u>fertilizer</u></em><em><u> </u></em><em><u>to </u></em><em><u>the</u></em><em><u> </u></em><em><u>plants </u></em>
<em><u>To </u></em><em><u>dispose </u></em><em><u>plastic</u></em><em><u> </u></em><em><u>waste</u></em><em><u> </u></em><em><u>:</u></em><em><u> </u></em>
- <em><u>recycling</u></em><em><u> </u></em><em><u>,</u></em><em><u> </u></em><em><u>reuse </u></em><em><u>and </u></em><em><u>reduce </u></em><em><u>is </u></em><em><u>the </u></em><em><u>process </u></em>
<em>hey </em><em>ya </em><em>mate </em><em>!</em><em>!</em>
<em>hope</em><em> it</em><em> helps</em><em>!</em><em>!</em><em> </em><em>(ʘᴗʘ✿)</em>
Vguttfvjhhutdxcbhyyyhhhhhhh HD jv bc HD g G G HD F G G f ft
Explanation:
Entropy is defined as the degree of randomness present in a substance. Therefore, more is the irregularity present in a compound more will be its molar entropy.
Hence, decreasing order to molar entropy in state of matter is as follows.
Gases > Liquids > Solids
- In the first pair, we are given
or
. Since, molar entropy of liquids is less than the molar entropy of gases.
Hence,
will have larger molar entropy as compared to
.
- In the second pair, we are given Fe(s) or Ni(s). More is the molar mass of a compound more will its molar entropy. Molar mass of Fe is 55.84 g/mol and molar mass of Ni is 58.69 g/mol.
Hence, molar entropy of Ni(s) is more than the molar entropy of Fe(s).
- In the third pair, we are given
or
. As both the given species are gaseous in nature. So, more is the molar mass of specie more will be its molar entropy.
Molar mass of
is 30.07 g/mol and molar mass of
is 28.05 g/mol. Therefore, molar entropy of
is more than the molar entropy of
.
- In the fourth pair, we are given
or
. Molar mass of
is 153.82 g/mol and molar mass of
is 16.04 g/mol.
Therefore, molar entropy of
is more than the molar entropy of
.
- In the fifth pair, we are given HgO(s) or MgO(s). Molar mass of HgO is 216.59 g/mol and molar mass of MgO is 40.30 g/mol.
Hence, molar entropy of HgO(s) is more than the molar entropy of MgO.
- In the fifth pair, we are given NaCl(aq) or
. Molar mass of NaCl 58.44 g/mol and molar mass of
is 95.21 g/mol.
Hence, the molar entropy of
is more than the molar entropy of NaCl(aq).
Answer:
Boiling point in kelvin is 373.1 \
boiling point of liquid hydrogen in kelvin is 21.15
Explanation: