Answer:
Option A :- ![\sf {a}^{\frac{1}{12}}](https://tex.z-dn.net/?f=%20%5Csf%20%7Ba%7D%5E%7B%5Cfrac%7B1%7D%7B12%7D%7D%20)
Step-by-step explanation:
![\hookrightarrow \sf \: \frac{ {a}^{ \frac{1}{3} } }{ {a}^{ \frac{1}{4} } }](https://tex.z-dn.net/?f=%20%5Chookrightarrow%20%5Csf%20%5C%3A%20%20%5Cfrac%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%7D%20)
Simplify the expression
![\hookrightarrow \sf \: {a}^{ \frac{1}{3} - \frac{1}{4} }](https://tex.z-dn.net/?f=%20%5Chookrightarrow%20%5Csf%20%5C%3A%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20-%20%20%5Cfrac%7B1%7D%7B4%7D%20%20%7D)
Transform the Expression
![\hookrightarrow \sf \: {a}^{ \frac{4 - 3}{12} }](https://tex.z-dn.net/?f=%20%5Chookrightarrow%20%5Csf%20%5C%3A%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B4%20-%203%7D%7B12%7D%20%20%7D)
Calculate
![\hookrightarrow \sf {a}^{\frac{1}{12}}](https://tex.z-dn.net/?f=%20%5Chookrightarrow%20%5Csf%20%7Ba%7D%5E%7B%5Cfrac%7B1%7D%7B12%7D%7D%20)
Answer:
The length of AC is;
C. 50
Step-by-step explanation:
By the midpoint of a triangle theorem, we have that a segment that spans across and intersects with the midpoints of two sides of a triangle is equal to half the length of the third side and parallel to the length of the third side
The given parameters are;
The midpoints of ΔACE are B, D, and F
The length of EC = 44
The length of DF = 25
Therefore, we have;
Given that DF is a midsegment of triangle ΔACE, then DF ║ AC and
the length of DF = (1/2) × AC the length of AC
∴ The length of AC = 2 × The length of DF
The length of DF = 25
∴ The length of AC = 2 × 25 = 50
The length of AC = 50
Is there supposed to be a picture or is this just random
Answer:
D. ![a^{2} + b^{2} = c^{2}](https://tex.z-dn.net/?f=a%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%3D%20c%5E%7B2%7D)
Step-by-step explanation:
Pythagorean Theorem
Answer:20
Step-by-step explanation: