Use the change-of-basis identity,
![\log_x(y) = \dfrac{\ln(y)}{\ln(x)}](https://tex.z-dn.net/?f=%5Clog_x%28y%29%20%3D%20%5Cdfrac%7B%5Cln%28y%29%7D%7B%5Cln%28x%29%7D)
to write
![xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}](https://tex.z-dn.net/?f=xyz%20%3D%20%5Clog_a%28bc%29%20%5Clog_b%28ac%29%20%5Clog_c%28ab%29%20%3D%20%5Cdfrac%7B%5Cln%28bc%29%20%5Cln%28ac%29%20%5Cln%28ab%29%7D%7B%5Cln%28a%29%20%5Cln%28b%29%20%5Cln%28c%29%7D)
Use the product-to-sum identity,
![\log_x(yz) = \log_x(y) + \log_x(z)](https://tex.z-dn.net/?f=%5Clog_x%28yz%29%20%3D%20%5Clog_x%28y%29%20%2B%20%5Clog_x%28z%29)
to write
![xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}](https://tex.z-dn.net/?f=xyz%20%3D%20%5Cdfrac%7B%28%5Cln%28b%29%20%2B%20%5Cln%28c%29%29%20%28%5Cln%28a%29%20%2B%20%5Cln%28c%29%29%20%28%5Cln%28a%29%20%2B%20%5Cln%28b%29%29%7D%7B%5Cln%28a%29%20%5Cln%28b%29%20%5Cln%28c%29%7D)
Redistribute the factors on the left side as
![xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}](https://tex.z-dn.net/?f=xyz%20%3D%20%5Cdfrac%7B%5Cln%28b%29%20%2B%20%5Cln%28c%29%7D%7B%5Cln%28b%29%7D%20%5Ctimes%20%5Cdfrac%7B%5Cln%28a%29%20%2B%20%5Cln%28c%29%7D%7B%5Cln%28c%29%7D%20%5Ctimes%20%5Cdfrac%7B%5Cln%28a%29%20%2B%20%5Cln%28b%29%7D%7B%5Cln%28a%29%7D)
and simplify to
![xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)](https://tex.z-dn.net/?f=xyz%20%3D%20%5Cleft%281%20%2B%20%5Cdfrac%7B%5Cln%28c%29%7D%7B%5Cln%28b%29%7D%5Cright%29%20%5Cleft%281%20%2B%20%5Cdfrac%7B%5Cln%28a%29%7D%7B%5Cln%28c%29%7D%5Cright%29%20%5Cleft%281%20%2B%20%5Cdfrac%7B%5Cln%28b%29%7D%7B%5Cln%28a%29%7D%5Cright%29)
Now expand the right side:
![xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}](https://tex.z-dn.net/?f=xyz%20%3D%201%20%2B%20%5Cdfrac%7B%5Cln%28c%29%7D%7B%5Cln%28b%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28a%29%7D%7B%5Cln%28c%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28b%29%7D%7B%5Cln%28a%29%7D%20%5C%5C%5C%5C%20~~~~~~~~~~~~%2B%20%5Cdfrac%7B%5Cln%28c%29%5Cln%28a%29%7D%7B%5Cln%28b%29%5Cln%28c%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28c%29%5Cln%28b%29%7D%7B%5Cln%28b%29%5Cln%28a%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28a%29%5Cln%28b%29%7D%7B%5Cln%28c%29%5Cln%28a%29%7D%20%5C%5C%5C%5C%20~~~~~~~~~~~~%20%2B%20%5Cdfrac%7B%5Cln%28c%29%5Cln%28a%29%5Cln%28b%29%7D%7B%5Cln%28b%29%5Cln%28c%29%5Cln%28a%29%7D)
Simplify and rewrite using the logarithm properties mentioned earlier.
![xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1](https://tex.z-dn.net/?f=xyz%20%3D%201%20%2B%20%5Cdfrac%7B%5Cln%28c%29%7D%7B%5Cln%28b%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28a%29%7D%7B%5Cln%28c%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28b%29%7D%7B%5Cln%28a%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28a%29%7D%7B%5Cln%28b%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28c%29%7D%7B%5Cln%28a%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28b%29%7D%7B%5Cln%28c%29%7D%20%2B%201)
![xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}](https://tex.z-dn.net/?f=xyz%20%3D%202%20%2B%20%5Cdfrac%7B%5Cln%28c%29%2B%5Cln%28a%29%7D%7B%5Cln%28b%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28a%29%2B%5Cln%28b%29%7D%7B%5Cln%28c%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28b%29%2B%5Cln%28c%29%7D%7B%5Cln%28a%29%7D)
![xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}](https://tex.z-dn.net/?f=xyz%20%3D%202%20%2B%20%5Cdfrac%7B%5Cln%28ac%29%7D%7B%5Cln%28b%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28ab%29%7D%7B%5Cln%28c%29%7D%20%2B%20%5Cdfrac%7B%5Cln%28bc%29%7D%7B%5Cln%28a%29%7D)
![xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)](https://tex.z-dn.net/?f=xyz%20%3D%202%20%2B%20%5Clog_b%28ac%29%20%2B%20%5Clog_c%28ab%29%20%2B%20%5Clog_a%28bc%29)
![\implies \boxed{xyz = x + y + z + 2}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cboxed%7Bxyz%20%3D%20x%20%2B%20y%20%2B%20z%20%2B%202%7D)
(C)
Answer: ![\frac{1}{10}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D)
<u>Step-by-step explanation:</u>
Blue = 5, Red = 3, Green = 2, Total = 10
Probability = First draw and Second draw
=
x
= ![\frac{10}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B10%7D%7B100%7D)
=
5 * 10 raise to power of - 4
Answer:
y=4/5x-3 - (-5, -7)
Step-by-step explanation:
So to solve this, lets just plug in each value for x, and see if the y value we get is equal to one of our answers.
So we have (-10, 5)
Well plug in -10 for 4/5x we get:
-40/5=-8
Next we take that value and solve:
y=-8-3
y=-11
The answer for this was 5, not -11.
Ill skip a few steps:
(10, -11):
Plug in 10 we get:
y=8-3 which is y=5. This is not right, for it needed to be -11.
Next we have (5, -1)
This gets us y=4-3 this is y=1 which is not -1. So thats not right.
Finally we have (-5, -7):
This gets us y=-4-3 this is y=-7. What was our y value? -7!
So the answer is (-5, -7)
I hope this helps! :)
Answer:
1000 cm²
Step-by-step explanation:
Given:
- Length = 10 cm
- Width = 12.5 cm
- Height = 8 cm
<u>Formula:</u>
![\text{Volume = Length} \times \text{Width} \times \text{Height}](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20%3D%20Length%7D%20%5Ctimes%20%5Ctext%7BWidth%7D%20%5Ctimes%20%5Ctext%7BHeight%7D)
Substitute the length, width, and the height of the prism to determine the volume of the prism.
![\implies \text{Volume = 10} \times 12.5 \times 8](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctext%7BVolume%20%3D%2010%7D%20%5Ctimes%2012.5%20%5Ctimes%208)
Simplify the right hand side of the equation, as needed;
![\implies \text{Volume = 10} \times 12.5 \times 8](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctext%7BVolume%20%3D%2010%7D%20%5Ctimes%2012.5%20%5Ctimes%208)
![\implies \text{Volume =}\ 125 \times 8](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctext%7BVolume%20%3D%7D%5C%20125%20%5Ctimes%208)
![\implies \boxed{\text{Volume =}\ 1000 \ \text{cm}^{2} }](https://tex.z-dn.net/?f=%5Cimplies%20%5Cboxed%7B%5Ctext%7BVolume%20%3D%7D%5C%201000%20%5C%20%5Ctext%7Bcm%7D%5E%7B2%7D%20%7D)
Therefore, the volume of the prism is 1000 cm².