Answer:
(27.3692 ; 44.6308)
Step-by-step explanation:
Mean, xbar = 36
Standard deviation, s = 11
Sample size, n = 12
Tcritical at 0.2, df = 12 - 1 = 11 ; Tcritical = 2.718
Confidence interval :
Xbar ± Margin of error
Margin of Error = Tcritical * s/sqrt(n)
Margin of Error = 2.718 * 11/sqrt(12) = 8.6308
Confidence interval :
Lower boundary : 36 - 8.6308 = 27.3692
Upper boundary : 36 + 8.6308 = 44.6308
(27.3692 ; 44.6308)
No the both are having first integer same and jolly dosen’t mention the 2nd integer after the decimal that is her error
Answer:
9
Step-by-step explanation: 3x4= 12 -3=9
The answer is C, number of snails to the total number of animals
Answer:
89.1° or -1.4°
Step-by-step explanation:
1. Location:
You are on the Mont-Saint-Jean escarpment, near the Belgian town of Waterloo.
The French troops are about 50 m below you and 1.2 km distant.
2. Finding the firing angle
Data:
R = 1200 m
u = 600 m/s
h = -50 m (the height of the target)
a = 9.8 m/s²
We have two conditions.
Horizontal distance
(1) 1200 = 600t cosθ
Vertical distance
(2) -50 = 600t sinθ - 4.9t²
Divide each side of (1) by 600cosθ.

Substitute (3) into (2)

Recall that
(5) sec²θ = 1/cos²θ = tan²θ + 1
Substitute (5) into (4)

Set up a quadratic equation

Solve for θ
Use the quadratic formula.
tanθ = 61.249 or -0.025
θ = arctan(61.249) = 89.1° or
θ = arctan(-0.025) = -1.4°