First, we have to make sure that the number of columns in the first matrix is equal to the number of rows in the second matrix.
![\left[\begin{array}{cc}1&-3&2&0\\\end{array}\right] * \left[\begin{array}{ccc}2&3&4\\1&2&3\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-3%262%260%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2A%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%264%5C%5C1%262%263%5Cend%7Barray%7D%5Cright%5D%20)
Since this is true, we can continue to solve the problem.
To multiply two matrices, multiply each row element in the first matrix by each column element in the second matrix. For example:
1*2 = 2
-3*1=-3
Then we add them to get our new matrix element.
-3+2=
-1Then we move to the next column of the second matrix.
1*3=3
-3*2=-6
-6+3=
-3Then the final column of the second matrix.
1*4=4
-3*3=-9
-9+4=-5
Our matrix so far:
![\left[\begin{array}{ccc}-1&-3&-5\\x&x&x\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-3%26-5%5C%5Cx%26x%26x%5Cend%7Barray%7D%5Cright%5D%20)
We do the same for the bottom row of the first matrix.
<em>First Column</em>
2*2=4
0*1=0
4+0=
4<em>Second Column
</em>2*3=6
0*2=0
6+0=
6
<em>Third Column</em>
2*4=8
0*3=0
8+0=
8Our final matrix is:
![\left[\begin{array}{ccc}-1&-3&-5\\4&6&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-3%26-5%5C%5C4%266%268%5Cend%7Barray%7D%5Cright%5D)
:)
Answer:
n = 4
Step-by-step explanation:
Given
10n + 2 = 7n + 14
Collect terms in n on the left side and numbers on the right side
Subtract 7n from both sides
3n + 2 = 14 ( subtract 2 from both sides )
3n = 12 ( divide both sides by 3 )
n = 4
Ok so I feel like the answer is A