Answer:
Step-by-step explanation:
1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer:
November 13
Step-by-step explanation:
Following dates are given
On November 10 = Merchandise ordered
Date of an invoice prepared, dated and mailed = November 13
Date when the merchandised received by the buyer = November 18
So, the credit period begins when the invoice is prepared, dated and the mailed by the seller to the buyer as it is the evidence of that the merchandise is ordered
The answer is simply (1,3) just subtract 2 from 3 and 4 from 7.
Answer:
(4,5)
Step-by-step explanation:
The "feasible region" has vertices (0,0), (7,0), (5,4), and (4,5)
P = 5x + 6y
Plug in each vertices in P and find out which give maximum value
(0,0) => P= 5(0) + 6(0) = 0
(7,0) => P= 5(7) + 6(0) = 35
(5,4) => P= 5(5) + 6(4) = 49
(4,5) => P= 5(4) + 6(5) = 50
We got maximum P=50 for vertex (4,5)
So the coordinates of the point that has the maximum value is (4,5)