1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
12

Modeling Radioactive Decay In Exercise, complete the table for each radioactive isotope.

Mathematics
1 answer:
Julli [10]3 years ago
4 0

Answer:

Step-by-step explanation:

Hello!

The complete table attached.

The following model allows you to predict the decade rate of a substance in a given period of time, i.e. the decomposition rate of a radioactive isotope is proportional to the initial amount of it given in a determined time:

y= C e^{kt}

Where:

y represents the amount of substance remaining after a determined period of time (t)

C is the initial amount of substance

k is the decaing constant

t is the amount of time (years)

In order to know the decay rate of a given radioactive substance you need to know it's half-life. Rembember, tha half-life of a radioactive isotope is the time it takes to reduce its mass to half its size, for example if you were yo have 2gr of a radioactive isotope, its half-life will be the time it takes for those to grams to reduce to 1 gram.

1)

For the first element you have the the following information:

²²⁶Ra (Radium)

Half-life 1599 years

Initial quantity 8 grams

Since we don't have the constant of decay (k) I'm going to calculate it using a initial quantity of one gram. We know that after 1599 years the initial gram of Ra will be reduced to 0.5 grams, using this information and the model:

y= C e^{kt}

0.5= 1 e^{k(1599)}

0.5= e^{k(1599)}

ln 0.5= k(1599)

\frac{1}{1599} ln 0.05 = k

k= -0.0004335

If the initial amount is C= 8 grams then after t=1599 you will have 4 grams:

y= C e^{kt}

y= 8 e^{(-0.0004355*1599)}

y= 4 grams

Now that we have the value of k for Radium we can calculate the remaining amount at t=1000 and t= 10000

t=1000

y= C e^{kt}

y_{t=1000}= 8 e^{(-0.0004355*1000)}

y_{t=1000}= 5.186 grams

t= 10000

y= C e^{kt}

y_{t=10000}= 8 e^{(-0.0004355*10000)}

y_{t=10000}= 0.103 gram

As you can see after 1000 years more of the initial quantity is left but after 10000 it is almost gone.

2)

¹⁴C (Carbon)

Half-life 5715

Initial quantity 5 grams

As before, the constant k is unknown so the first step is to calculate it using the data of the hald life with C= 1 gram

y= C e^{kt}

1/2= e^{k5715}

ln 1/2= k5715

\frac{1}{5715} ln1/2= k

k= -0.0001213

Now we can calculate the remaining mass of carbon after t= 1000 and t= 10000

t=1000

y= C e^{kt}

y_{t=1000}= 5 e^{(-0.0001213*1000)}

y_{t=1000}= 4.429 grams

t= 10000

y= C e^{kt}

y_{t=10000}= 5 e^{(-0.0001213*10000)}

y_{t=10000}= 1.487 grams

3)

This excersice is for the same element as 2)

¹⁴C (Carbon)

Half-life 5715

y_{t=10000}= 6 grams

But instead of the initial quantity, we have the data of the remaining mass after t= 10000 years. Since the half-life for this isotope is the same as before, we already know the value of the constant and can calculate the initial quantity C

y_{t=10000}= C e^{kt}

6= C e^{(-0.0001213*10000)}

C= \frac{6}{e^(-0.0001213*10000)}

C= 20.18 grams

Now we can calculate the remaining mass at t=1000

y_{t=1000}= 20.18 e^{(-0.0001213*1000)}

y_{t=1000}= 17.87 grams

4)

For this exercise we have the same element as in 1) so we already know the value of k and can calculate the initial quantity and the remaining mass at t= 10000

²²⁶Ra (Radium)

Half-life 1599 years

From 1) k= -0.0004335

y_{t=1000}= 0.7 gram

y_{t=1000}= C e^{kt}

0.7= C e^{(-0.0004335*1000)}

C= \frac{0.7}{e^(-0.0004335*1000)}

C= 1.0798 grams ≅ 1.08 grams

Now we can calculate the remaining mass at t=10000

y_{t=10000}= 1.08 e^{(-0.0001213*10000)}

y_{t=10000}= 0.32 gram

5)

The element is

²³⁹Pu (Plutonium)

Half-life 24100 years

Amount after 1000 y_{t=1000}= 2.4 grams

First step is to find out the decay constant (k) for ²³⁹Pu, as before I'll use an initial quantity of C= 1 gram and the half life of the element:

y= C e^{kt}

1/2= e^{k24100}

ln 1/2= k*24100

k= \frac{1}{24100} * ln 1/2

k= -0.00002876

Now we calculate the initial quantity using the given information

y_{t=1000}= C e^{kt}

2.4= C e^{( -0.00002876*1000)}

C= \frac{2.4}{e^( -0.00002876*1000)}

C=2.47 grams

And the remaining mass at t= 10000 is:

y_{t=10000}= C e^{kt}

y_{t=10000}= 2.47 * e^{( -0.00002876*10000)}

y_{t=10000}= 1.85 grams

6)

²³⁹Pu (Plutonium)

Half-life 24100 years

Amount after 10000 y_{t=10000}= 7.1 grams

From 5) k= -0.00002876

The initial quantity is:

y_{t=1000}= C e^{kt}

7.1= C e^{( -0.00002876*10000)}

C= \frac{7.1}{e^( -0.00002876*10000)}

C= 9.47 grams

And the remaining masss for t=1000 is:

y_{t=1000}= C e^{kt}

y_{t=1000}= 9.47 * e^{( -0.00002876*1000)}

y_{t=1000}= 9.20 grams

I hope it helps!

You might be interested in
You can pay $4.80 for 8 pounds of sugar or $11.75 for 25 pounds of
cricket20 [7]
25 pounds would be a better deal
7 0
3 years ago
Read 2 more answers
A car wash washes 68 cars in 8 hours. At this rate, how many cars are washed in 1 hour?
myrzilka [38]

Answer:

8.5 (If just pure cars then 8.)

Step-by-step explanation:

To find this, just divide 68/8 to find how many cars are washed in an hour. Plugging it into a calculator, we find out that it is 8.5. If you need elaboration, just comment.

6 0
3 years ago
Read 2 more answers
Select the correct answer.
galina1969 [7]

Answer:

<h2>C. 8 + 3i</h2>

Step-by-step explanation:

(9 + 6i) - (1 + 3i) = 9 + 6i - 1 - 3i = (9 - 1) + (6i - 3i) = 8 + 3i

8 0
3 years ago
Mr. Anderson wrote (7x9) 103 on the board. What is the value of that expression
RUDIKE [14]

Answer:

6,489

Step-by-step explanation:

first you would multiply 7 and 9, which would be 63

7 x 9 = 63

then you would multiply 63 by 103 since they are being multiplied

63 x 103 = 6,489


8 0
3 years ago
**MARKING BRAINLIEST PLEASE HELP**
Annette [7]

Answer:

6

1, 50.3

Step-by-step explanation:

the second part for question two could be anywhere from 50.1-50.4

3 0
3 years ago
Other questions:
  • Which table of values is correct for the equation y = - x + 3.
    10·1 answer
  • A rectangular prism is 3 units high, 2 units wide, and 5 units long. What is its surface area
    6·1 answer
  • Simplify your answer (3j+4)^2
    7·1 answer
  • Can yall go anwser my recent questions an comment when done ill give ou brainlest 100 pts.
    14·2 answers
  • 15 points! The data set shows the weights of pumpkins, in pounds, that are chosen for a photograph in a farming magazine. The re
    10·1 answer
  • 4 times what equals 3/4
    12·2 answers
  • Solve the system.
    8·2 answers
  • Rectangle abcd is similar to rectangle pqrs given that ab =14cm bc =8cm and pq=12cm calculate the length of qr
    12·1 answer
  • Complete the table in your scratch paper and answer the following question below.
    12·1 answer
  • The______is the set of inputs For a fraction
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!