1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
12

Modeling Radioactive Decay In Exercise, complete the table for each radioactive isotope.

Mathematics
1 answer:
Julli [10]3 years ago
4 0

Answer:

Step-by-step explanation:

Hello!

The complete table attached.

The following model allows you to predict the decade rate of a substance in a given period of time, i.e. the decomposition rate of a radioactive isotope is proportional to the initial amount of it given in a determined time:

y= C e^{kt}

Where:

y represents the amount of substance remaining after a determined period of time (t)

C is the initial amount of substance

k is the decaing constant

t is the amount of time (years)

In order to know the decay rate of a given radioactive substance you need to know it's half-life. Rembember, tha half-life of a radioactive isotope is the time it takes to reduce its mass to half its size, for example if you were yo have 2gr of a radioactive isotope, its half-life will be the time it takes for those to grams to reduce to 1 gram.

1)

For the first element you have the the following information:

²²⁶Ra (Radium)

Half-life 1599 years

Initial quantity 8 grams

Since we don't have the constant of decay (k) I'm going to calculate it using a initial quantity of one gram. We know that after 1599 years the initial gram of Ra will be reduced to 0.5 grams, using this information and the model:

y= C e^{kt}

0.5= 1 e^{k(1599)}

0.5= e^{k(1599)}

ln 0.5= k(1599)

\frac{1}{1599} ln 0.05 = k

k= -0.0004335

If the initial amount is C= 8 grams then after t=1599 you will have 4 grams:

y= C e^{kt}

y= 8 e^{(-0.0004355*1599)}

y= 4 grams

Now that we have the value of k for Radium we can calculate the remaining amount at t=1000 and t= 10000

t=1000

y= C e^{kt}

y_{t=1000}= 8 e^{(-0.0004355*1000)}

y_{t=1000}= 5.186 grams

t= 10000

y= C e^{kt}

y_{t=10000}= 8 e^{(-0.0004355*10000)}

y_{t=10000}= 0.103 gram

As you can see after 1000 years more of the initial quantity is left but after 10000 it is almost gone.

2)

¹⁴C (Carbon)

Half-life 5715

Initial quantity 5 grams

As before, the constant k is unknown so the first step is to calculate it using the data of the hald life with C= 1 gram

y= C e^{kt}

1/2= e^{k5715}

ln 1/2= k5715

\frac{1}{5715} ln1/2= k

k= -0.0001213

Now we can calculate the remaining mass of carbon after t= 1000 and t= 10000

t=1000

y= C e^{kt}

y_{t=1000}= 5 e^{(-0.0001213*1000)}

y_{t=1000}= 4.429 grams

t= 10000

y= C e^{kt}

y_{t=10000}= 5 e^{(-0.0001213*10000)}

y_{t=10000}= 1.487 grams

3)

This excersice is for the same element as 2)

¹⁴C (Carbon)

Half-life 5715

y_{t=10000}= 6 grams

But instead of the initial quantity, we have the data of the remaining mass after t= 10000 years. Since the half-life for this isotope is the same as before, we already know the value of the constant and can calculate the initial quantity C

y_{t=10000}= C e^{kt}

6= C e^{(-0.0001213*10000)}

C= \frac{6}{e^(-0.0001213*10000)}

C= 20.18 grams

Now we can calculate the remaining mass at t=1000

y_{t=1000}= 20.18 e^{(-0.0001213*1000)}

y_{t=1000}= 17.87 grams

4)

For this exercise we have the same element as in 1) so we already know the value of k and can calculate the initial quantity and the remaining mass at t= 10000

²²⁶Ra (Radium)

Half-life 1599 years

From 1) k= -0.0004335

y_{t=1000}= 0.7 gram

y_{t=1000}= C e^{kt}

0.7= C e^{(-0.0004335*1000)}

C= \frac{0.7}{e^(-0.0004335*1000)}

C= 1.0798 grams ≅ 1.08 grams

Now we can calculate the remaining mass at t=10000

y_{t=10000}= 1.08 e^{(-0.0001213*10000)}

y_{t=10000}= 0.32 gram

5)

The element is

²³⁹Pu (Plutonium)

Half-life 24100 years

Amount after 1000 y_{t=1000}= 2.4 grams

First step is to find out the decay constant (k) for ²³⁹Pu, as before I'll use an initial quantity of C= 1 gram and the half life of the element:

y= C e^{kt}

1/2= e^{k24100}

ln 1/2= k*24100

k= \frac{1}{24100} * ln 1/2

k= -0.00002876

Now we calculate the initial quantity using the given information

y_{t=1000}= C e^{kt}

2.4= C e^{( -0.00002876*1000)}

C= \frac{2.4}{e^( -0.00002876*1000)}

C=2.47 grams

And the remaining mass at t= 10000 is:

y_{t=10000}= C e^{kt}

y_{t=10000}= 2.47 * e^{( -0.00002876*10000)}

y_{t=10000}= 1.85 grams

6)

²³⁹Pu (Plutonium)

Half-life 24100 years

Amount after 10000 y_{t=10000}= 7.1 grams

From 5) k= -0.00002876

The initial quantity is:

y_{t=1000}= C e^{kt}

7.1= C e^{( -0.00002876*10000)}

C= \frac{7.1}{e^( -0.00002876*10000)}

C= 9.47 grams

And the remaining masss for t=1000 is:

y_{t=1000}= C e^{kt}

y_{t=1000}= 9.47 * e^{( -0.00002876*1000)}

y_{t=1000}= 9.20 grams

I hope it helps!

You might be interested in
Atlanta and Los Angeles have two of the top ten busiest airports in the world. In 2011, Atlanta had approximately 92.365 million
mash [69]
61.848 million passengers
6 0
3 years ago
Read 2 more answers
Solve the following system of equations by using the elimination method.
mariarad [96]

Answer:

the answer is (6, 1)

Step-by-step explanation:

x² + y² - 12 x - 2 y + 12 = 0

(x²-12x) +(y² -2y) +12 = 0

(x²-2(6)(x)+6²)-6² +(y² -2y+1) -1+12 = 0

(x-6)² +(y-1)² = 5²

the center of a circle is (6, 1)

4 0
3 years ago
Solve the system of equations.<br><br>- 9x + 4y = 6<br><br>9x + 5y = -33​
liubo4ka [24]

Let us solve this system of equations by using the elimination method. Adding the 2 equations, we get

9x + 5y - 9x + 4y = -33 + 6

9y = -27

y = -3

Substituting this value of y in the first equation, we get

-9x + 4(-3) = 6

-9x - 12 = 6

9x + 12 = -6

9x = -18

x = -2

Therefore, x = -2, and y = -3. Hope this helps! If you have any questions, feel free to ask.

7 0
3 years ago
Can you help with number 18 please?
motikmotik

16.1 - 0.25 = 15.85
6 0
3 years ago
17n + 4n- 4= 122<br><br> how do i solve for n?
Leokris [45]

Answer:

n = 6

Step-by-step explanation:

17n + 4n - 4 =122

combine like terms  17n & 4n

21n - 4 = 122

21n - 4 + 4 = 122 + 4

21n = 126

21n / 21 = 126 / 21

n = 6

8 0
3 years ago
Other questions:
  • Dwayne earns $11.45 per hour. Last week he worked 1384 hours. How much did he earn last week?
    9·1 answer
  • A philanthropic organization helped a town in Africa dig several wells to gain access to clean water. Before the wells were in p
    10·1 answer
  • What is the recursive rule for this geometric sequence? 12,−2,8,−32,...                     a1=1/2;an=−4⋅an−1                  
    14·2 answers
  • The computer game Peter wants to buy will cost at least $50 and not more than $70. He earns $3 an hour running errands for his g
    7·2 answers
  • Chris drives an ice cream truck 2 3\4 hours, how many minutes did he drive
    13·2 answers
  • What is the answer to this. 27-(7x3)
    7·2 answers
  • 61/100,0.65,61.5 least to greatest
    8·1 answer
  • Jessica wants to buy a new team jacket that’s cost 35$
    6·1 answer
  • 8^3 + 5^4<br> *<br><br> PLEASEEE HELPPP OMGGG
    15·2 answers
  • 0<br> 100%<br> Which expression is equivalent to (-11x2 +1.4x-3) + (4x2-2.7x+8)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!