1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
12

Modeling Radioactive Decay In Exercise, complete the table for each radioactive isotope.

Mathematics
1 answer:
Julli [10]3 years ago
4 0

Answer:

Step-by-step explanation:

Hello!

The complete table attached.

The following model allows you to predict the decade rate of a substance in a given period of time, i.e. the decomposition rate of a radioactive isotope is proportional to the initial amount of it given in a determined time:

y= C e^{kt}

Where:

y represents the amount of substance remaining after a determined period of time (t)

C is the initial amount of substance

k is the decaing constant

t is the amount of time (years)

In order to know the decay rate of a given radioactive substance you need to know it's half-life. Rembember, tha half-life of a radioactive isotope is the time it takes to reduce its mass to half its size, for example if you were yo have 2gr of a radioactive isotope, its half-life will be the time it takes for those to grams to reduce to 1 gram.

1)

For the first element you have the the following information:

²²⁶Ra (Radium)

Half-life 1599 years

Initial quantity 8 grams

Since we don't have the constant of decay (k) I'm going to calculate it using a initial quantity of one gram. We know that after 1599 years the initial gram of Ra will be reduced to 0.5 grams, using this information and the model:

y= C e^{kt}

0.5= 1 e^{k(1599)}

0.5= e^{k(1599)}

ln 0.5= k(1599)

\frac{1}{1599} ln 0.05 = k

k= -0.0004335

If the initial amount is C= 8 grams then after t=1599 you will have 4 grams:

y= C e^{kt}

y= 8 e^{(-0.0004355*1599)}

y= 4 grams

Now that we have the value of k for Radium we can calculate the remaining amount at t=1000 and t= 10000

t=1000

y= C e^{kt}

y_{t=1000}= 8 e^{(-0.0004355*1000)}

y_{t=1000}= 5.186 grams

t= 10000

y= C e^{kt}

y_{t=10000}= 8 e^{(-0.0004355*10000)}

y_{t=10000}= 0.103 gram

As you can see after 1000 years more of the initial quantity is left but after 10000 it is almost gone.

2)

¹⁴C (Carbon)

Half-life 5715

Initial quantity 5 grams

As before, the constant k is unknown so the first step is to calculate it using the data of the hald life with C= 1 gram

y= C e^{kt}

1/2= e^{k5715}

ln 1/2= k5715

\frac{1}{5715} ln1/2= k

k= -0.0001213

Now we can calculate the remaining mass of carbon after t= 1000 and t= 10000

t=1000

y= C e^{kt}

y_{t=1000}= 5 e^{(-0.0001213*1000)}

y_{t=1000}= 4.429 grams

t= 10000

y= C e^{kt}

y_{t=10000}= 5 e^{(-0.0001213*10000)}

y_{t=10000}= 1.487 grams

3)

This excersice is for the same element as 2)

¹⁴C (Carbon)

Half-life 5715

y_{t=10000}= 6 grams

But instead of the initial quantity, we have the data of the remaining mass after t= 10000 years. Since the half-life for this isotope is the same as before, we already know the value of the constant and can calculate the initial quantity C

y_{t=10000}= C e^{kt}

6= C e^{(-0.0001213*10000)}

C= \frac{6}{e^(-0.0001213*10000)}

C= 20.18 grams

Now we can calculate the remaining mass at t=1000

y_{t=1000}= 20.18 e^{(-0.0001213*1000)}

y_{t=1000}= 17.87 grams

4)

For this exercise we have the same element as in 1) so we already know the value of k and can calculate the initial quantity and the remaining mass at t= 10000

²²⁶Ra (Radium)

Half-life 1599 years

From 1) k= -0.0004335

y_{t=1000}= 0.7 gram

y_{t=1000}= C e^{kt}

0.7= C e^{(-0.0004335*1000)}

C= \frac{0.7}{e^(-0.0004335*1000)}

C= 1.0798 grams ≅ 1.08 grams

Now we can calculate the remaining mass at t=10000

y_{t=10000}= 1.08 e^{(-0.0001213*10000)}

y_{t=10000}= 0.32 gram

5)

The element is

²³⁹Pu (Plutonium)

Half-life 24100 years

Amount after 1000 y_{t=1000}= 2.4 grams

First step is to find out the decay constant (k) for ²³⁹Pu, as before I'll use an initial quantity of C= 1 gram and the half life of the element:

y= C e^{kt}

1/2= e^{k24100}

ln 1/2= k*24100

k= \frac{1}{24100} * ln 1/2

k= -0.00002876

Now we calculate the initial quantity using the given information

y_{t=1000}= C e^{kt}

2.4= C e^{( -0.00002876*1000)}

C= \frac{2.4}{e^( -0.00002876*1000)}

C=2.47 grams

And the remaining mass at t= 10000 is:

y_{t=10000}= C e^{kt}

y_{t=10000}= 2.47 * e^{( -0.00002876*10000)}

y_{t=10000}= 1.85 grams

6)

²³⁹Pu (Plutonium)

Half-life 24100 years

Amount after 10000 y_{t=10000}= 7.1 grams

From 5) k= -0.00002876

The initial quantity is:

y_{t=1000}= C e^{kt}

7.1= C e^{( -0.00002876*10000)}

C= \frac{7.1}{e^( -0.00002876*10000)}

C= 9.47 grams

And the remaining masss for t=1000 is:

y_{t=1000}= C e^{kt}

y_{t=1000}= 9.47 * e^{( -0.00002876*1000)}

y_{t=1000}= 9.20 grams

I hope it helps!

You might be interested in
Mark had 45 paper clips. He evenly placed them into 5 different containers. How many paper clips were in each container?
Marat540 [252]

Answer:

9 containers

Step-by-step explanation:

You have to evenly divide 45 paper clips into 5 different containers.

45÷5=9

7 0
2 years ago
Someone come help me with this problem ❤️
emmainna [20.7K]

I WOULD SAY AY ITS A

3 0
3 years ago
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
Kisachek [45]
So, I'm going to break it down to help you understand it a bit more.

If it starts at (0,-2) and crosses through (1,0) that means it moved to the right once and up twice. Which means, that the slope will be 2. If it were one it would be to the right 1 up one, if it were 4 it would be to the right 1 up 4, and finally if it were 1/2 it would be to the right 2 up 1. 

So, your answer is C. or 2. 
7 0
3 years ago
A rectangle has an area of 10.2 square inches and a height of 3 inches. What is the length of the base?​
kicyunya [14]

Answer:

Length = 3.4 inches

Step-by-step explanation:

Area of a rectangle : Length × Height = Area

Rearranged : Area ÷ height = length

10.2÷3=3.4

3 0
3 years ago
How do you combine like terms of #-10+7x+24-2x#?
cupoosta [38]
You should first add -10 and 24. Then you should subtract 7x and 2x. All you have to do is to find the like terms ( 7x and 2x because they both have x’s, and -10 and 24 because they don’t have x’s). So your answer would be 14+5x. If you have any questions please reply.
3 0
3 years ago
Other questions:
  • Please help!!!!!!! Also please explain MAX POINTS
    8·2 answers
  • Which of the following is the largest distance? centimeter millimeter decimeter kilometer
    12·1 answer
  • A student stands on a bathroom scale that uses the U.S. system of units. Which
    11·1 answer
  • Find the sum of (x² + 6x – 5) + (2x2 + 15).
    13·1 answer
  • After multiplying,we have a(b plus c)​
    5·1 answer
  • A pool at a park takes up an area of 540 square yards. The lengthier 1 2/3 times as long as the width. What are the dimensions o
    5·1 answer
  • The graphs below shows a change in the slope of the Line m from 34to 14.
    11·1 answer
  • Anyways I’m so close! Sleep here I come lol
    7·1 answer
  • 3n^5 ÷ 6n^3, using properties of exponents
    11·2 answers
  • Choose the best estimate for the length of a paperback book. A. 4 in. B. 8 in. C. 14 in. D. 18 in.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!