The Lagrangian for this function and the given constraints is

which has partial derivatives (set equal to 0) satisfying

This is a fairly standard linear system. Solving yields Lagrange multipliers of

and

, and at the same time we find only one critical point at

.
Check the Hessian for

, given by


is positive definite, since

for any vector

, which means

attains a minimum value of

at

. There is no maximum over the given constraints.
I did the problem and I got negative 4 over 9
Answer:123456789/j
Step-by-step explanation:
hello jannat l