Answer:
B. 30
Step-by-step explanation:
the equation looks like 22 - x = -8 and 22 - 30 is negative 8
Answer:
•A c-chart is the appropriate control chart
• c' = 8.5
• Control limits, CL = 8.5
Lower control limits, LCL = 0
Upper control limits, UCL = 17.25
Step-by-step explanation:
A c chart is a quality control chart used for the number of flaws per unit.
Given:
Past inspection data:
Number of units= 100
Total flaws = 850
We now have:
c' = 850/100
= 8.5
Where CL = c' = 8.5
For control limits, we have:
CL = c'
UCL = c' + 3√c'
LCL = c' - 3√c'
The CL stands for the normal control limit, while the UCL and LCL are the upper and lower control limits respectively
Calculating the various control limits we have:
CL = c'
CL = 8.5
UCL = 8.5 + 3√8.5
= 17.25
LCL = 8.5 - 3√8.5
= -0.25
A negative LCL tend to be 0. Therefore,
LCL = 0
1
Simplify \frac{1}{2}\imath n(x+3)21ın(x+3) to \frac{\imath n(x+3)}{2}2ın(x+3)
\frac{\imath n(x+3)}{2}-\imath nx=02ın(x+3)−ınx=0
2
Add \imath nxınx to both sides
\frac{\imath n(x+3)}{2}=\imath nx2ın(x+3)=ınx
3
Multiply both sides by 22
\imath n(x+3)=\imath nx\times 2ın(x+3)=ınx×2
4
Regroup terms
\imath n(x+3)=nx\times 2\imathın(x+3)=nx×2ı
5
Cancel \imathı on both sides
n(x+3)=nx\times 2n(x+3)=nx×2
6
Divide both sides by nn
x+3=\frac{nx\times 2}{n}x+3=nnx×2
7
Subtract 33 from both sides
x=\frac{nx\times 2}{n}-3x=nnx×2−3
Answer:
B: 375 ft^2
Step-by-step explanation:
20 x 15 + 10 x 15/2 = 375