7 + 2x - 6 = -3x - 3 - 4
2x + 1 = -3x - 3 - 4
2x + 1 = -3x - 7
2x + 1 + 3x = -7
5x + 1 = -7
5x = -7 - 1
5x = -8
x = -8/5.
Answer:

Step-by-step explanation:
Given:
The quadratic function is given as:

The standard form of a quadratic function is given as:
, where, 'a', 'h' and 'k' are real numbers.
Now, in order to convert the given function to standard form, we use completing by square method.
![-x^2+2x=-(x^2-2x)=-[(x-2)^2-2^2]=-[(x-2)^2-4]=-(x-2)^2+4](https://tex.z-dn.net/?f=-x%5E2%2B2x%3D-%28x%5E2-2x%29%3D-%5B%28x-2%29%5E2-2%5E2%5D%3D-%5B%28x-2%29%5E2-4%5D%3D-%28x-2%29%5E2%2B4)
Now,
can be rewritten as:

Therefore, the standard form of the function is:

Answer:
g(x)=(x+7)-3
Step-by-step explanation:
I am not so sure of what you meant for your question but I put it into an equation. it goes left 7 and 3 down.
Answer:
4096π / 5
Step-by-step explanation:
∫∫∫ (x² + y² + z²) dV
In spherical coordinates, x² + y² + z² = r², and dV = r² sin φ dr dθ dφ.
E is the range 0 ≤ r ≤ 4, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.
∫₀ᵖⁱ∫₀²ᵖⁱ∫₀⁴ (r²) (r² sin φ dr dθ dφ)
∫₀ᵖⁱ∫₀²ᵖⁱ∫₀⁴ (r⁴ sin φ) dr dθ dφ
Evaluate the first integral.
∫₀ᵖⁱ∫₀²ᵖⁱ (⅕ r⁵ sin φ)|₀⁴ dθ dφ
∫₀ᵖⁱ∫₀²ᵖⁱ (¹⁰²⁴/₅ sin φ) dθ dφ
¹⁰²⁴/₅ ∫₀ᵖⁱ∫₀²ᵖⁱ (sin φ) dθ dφ
Evaluate the second integral.
¹⁰²⁴/₅ ∫₀ᵖⁱ (θ sin φ)|₀²ᵖⁱ dφ
¹⁰²⁴/₅ ∫₀ᵖⁱ (2π sin φ) dφ
²⁰⁴⁸/₅ π ∫₀ᵖⁱ sin φ dφ
Evaluate the third integral.
²⁰⁴⁸/₅ π (-cos φ)|₀ᵖⁱ
²⁰⁴⁸/₅ π (-cos π + cos 0)
²⁰⁴⁸/₅ π (1 + 1)
⁴⁰⁹⁶/₅ π
Answer:
23/6
Step-by-step explanation: