1 ) Area of the rectangle:
A = L x W
L = √(2² + 2²) = √8 = 2√2
W = √(6² + 6²) = √72 = 6√2
A = 2√2 x 6√2 = 24 units²
2 ) Area of a triangle:
RQ = 2 + 4 = 6 units
h = 4 units
A = ( 6 * 4 ) / 2 = 12 units²
3 ) The perimeter of Δ ABC:
AB = √(3² + 4²) = √25 = 5 units
BC = √(1² + 1²) = √2 = 1.4 units
AC = √(3² + 4²) = √25 = 5 units
P = 5 + 1.4 + 5 = 11.4 units
4 ) Area of the figure ( approx.):
A ≈ ( 8 * 8) - 6.25 - 8 - 2.5 ≈ 47.25
Answer: C ) 50 ft²
5 ) Area under the curve:
A ≈ 0.5 * 3 + 0.5 * 3.5 + 0.5 * 4 + 0.5 * 4.5 + 0.5 * 5 + 0.5 * 4.5 + 0.5 * 4 +
+ 0.5 * 3 ≈ 0.5 * 31.5 ≈ 15.6
Answer: B ) 15 units²
Steps To Solve:
-5(3 * -7 + 4y)
~Solve what's in parenthesis
-5(-21 + 4y)
~Distributive Property
105 - 20y
Hope This Helped! Good Luck!
Answer:
18 inches
Step-by-step explanation:
54*1/3=18(inches)
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer: It’s the second one!
Explanation: The dot is open and pointing to the side of the numbers greater than -3. It has to be an open dot because it is “greater than -3” not “greater than or equal to-3”! :)