Answer:
The magnetic field that will allow the electron to go through the region without being deflected is
.
Explanation:
Given that,
Velocity of the electron, 
Electric field, 
We need to find the magnetic field that will allow the electron to go through the region without being deflected. It can be calculated as :

Here, 

So, the magnetic field that will allow the electron to go through the region without being deflected is
.
∆g for these initial partial pressures is 10,403.31 KJ.
ΔG gets increasingly positive as a product gas's partial pressure is raised. ΔG becomes more negative as the partial pressure of a reactant gas increases.
∆g = RT ln (q/k)
In this equation: R = 8.314 J mol⁻¹ K⁻¹ or 0.008314 kJ mol⁻¹ K⁻¹
K = 325
If ΔG < 0, then K > Q, and the reaction must proceed to the right to reach equilibrium.
∴∆g = RT ln (q/k)
= 8.314 × 298 ln ( 5 / 325)
= 2477.57 ln 0.015
= 2477.57 × (-4.199)
= 10,403.31 KJ
Products are preferred over reactants at equilibrium if G° 0 and both the products and reactants are in their standard states. When reactants are preferred above products in equilibrium, however, if G° > 0, K 1. At equilibrium, neither reactants nor products are preferred if G° = 0, hence K = 1.
Therefore, ∆g for these initial partial pressures is 10,403.31 KJ.
Learn more about equilibrium here:
brainly.com/question/13414142
#SPJ4
If you stand up in a big room and echo, your voice will echo
from the walls. As long as the room is empty. Since
the speed of sound is constant, depending on air density, the more humid the
air the faster and farther sound travels. The
speed of sound is constant, you could measure the time it takes for your voice
to echo off the walls. The same thing happens with Doppler radar, but it’s not voice,
it has higher frequency signals.<span> </span>
Answer:c=0.213 J/g/K
Explanation:
Given
sample mass
initial temperature of mineral
mass of water
Water initial temperature
Heat capacity of calorimeter =15.3 J/k
Final Temperature is 24.8
let c be the specific heat of mineral
Heat released by mineral sample=heat absorbed by calorimeter and water


Be because it’s the answer