Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ice cube is 
The temperature of the ice cube is
The mass of the copper cube is 
The final temperature of both substance is 
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
![Q = m_c * c_c * [T_c - T_f ]](https://tex.z-dn.net/?f=Q%20%3D%20%20m_c%20%20%2A%20%20c_c%20%2A%20%20%5BT_c%20%20-%20%20T_f%20%5D)
The specific heat of copper is 
Generally the heat gained by the ice cube is mathematically represented as

Here L is the latent heat of fusion of the ice with value 
So

=>
So
=> 
Answer:
h=2.86m
Explanation:
In order to give a quick response to this exercise we will use the equations of conservation of kinetic and potential energy, the equation is given by,

There is no kinetic energy in the initial state, nor potential energy in the end,

In the final kinetic energy, the energy contributed by the Inertia must be considered, as well,

The inertia of the bodies is given by the equation,



On the other hand the angular velocity is given by

Replacing these values in the equation,

Solving for h,

Look it up on google it has the answer
Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle
Answer: D
Explanation:
Kinetic energy = 1/2mV^2
From the formula above, we can deduce that kinetic energy is proportional to the square of speed. That is,
K.E = V^2
Graphically, the relationship isn't linear but a positive exponential. Therefore, option D is the correct answer.