B. fungi
I hope this helps!
Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Answer:
(d) 14.7 J.
Explanation:
Using the equation,
W = mghsin∅................. equation 1
Where W = work done on the cart by the force of gravity, g = acceleration due to gravity, h = height, ∅ = angle between the displacement and the force of gravity.
Given: m = 2 kg, g = 9.8 m/s², h = 1.5 m, ∅ = 30°
Substitute into equation 1
W = 2(9.8)(1.5)sin30
W = 2×9.8×1.5×0.5
W = 14.7 J.
The right option is (d) 14.7 J
Answer:
I think its the helicopter one
Explanation:
it could be the bus one though
Answer:
B. The more optically dense the material, the higher the refractive index.
Explanation: