The magnitude of the tangential acceleration of the hanging mass is 2mg/MR
<h3>
Tangential acceleration of the hanging mass</h3>
The tangential acceleration of the hanging mass around the pulley is determined from the principle of conservation of angular momentum as shown below;
τ = Iα
Where;
- I is the moment of inertia
- α is the angular velocity

Where;
- m is the hanging mass
- M is the mass of solid disk
The tangential acceleration is calculated as follows;

Thus, the magnitude of the tangential acceleration of the hanging mass is 2mg/MR
Learn more about tangential acceleration here: brainly.com/question/11476496
Answer: Cannot determine cause we need to know the change of time to calculate the work.
Explanation:
m = 0.5kg
V = 3m/s - 5m/s = -2m/s
P = W/t = Fv
F = ma
W = Fvt
W = (0.5)(9.8)t = 4.9t
Answer:
By having specialized instruments onboard NASA spacecrat, they do this to detect how they behave
Explanation:
I really hope this is right have a stellar day.
Answer:
c. emission of electromagnetic radiation.
Explanation:
When an atom changes its state from an excited one to the ground state, it means that the atom is changing from a state with higher energy to a state of lower energy.
This can occur, for instance, in the presence of an electronic transition (an electron moving from a higher energy level to a lower energy state) or of a nuclear transition (the nucleus get de-excited). In both cases, since the total energy must be conserved, there must be energy released. This energy is released as a photon (electromagnetic radiation), whose energy is equal to the difference between the two energy levels involved in the transition.
Answer:
25km/h
Explanation:
This is a trick question, the average speed in this case does not really depend on calculation or extrapolation, it just refers to an event that is yet to occur,
In other words, if you want to achieve an average speed of 25km/h for 23km, then you should drive your car at a constant speed of 25km/h, any variation in speed may cause a change in your average speed at the end.