we conclude that if the scale factor from S to M is 3/2, then the scale factor from M to S is 2/4.
<h3>
</h3><h3>What is the scale factor from M to S?</h3>
Suppose we have a figure S. If we apply a stretch of scale factor K to our figure S, we can say that all the dimensions of figure S are multiplied by K.
So, if S represents the length of a bar, then after the stretch we will get a bar of length M, such that:
M = S*K
If that scale factor is 3/2, then we have the case of the problem:
M = (3/2)*S
We can isolate S in the above relation:
(2/3)*M = S
Now we have an equation (similar to the first one) that says that the scale factor from M to S is 2/3.
Then we conclude that if the scale factor from S to M is 3/2, then the scale factor from M to S is 2/4.
If you want to learn more about scale factors:
brainly.com/question/25722260
#SPJ1
Answer:
<h2>290 in²</h2>
Step-by-step explanation:
From the net:
S.A. = 2(25 in²) + 4(60 in²) = 50 in² + 240 in² = 290 in²
From the model:
The formula of a Surface Area of a rectangular prism:
S.A. = 2(lw + lh + wh)
l - length
w - width
h - height
We have l = 5 in, w = 5 in, and h = 12 in. Substitute:
S.A. = 2(5 · 5 + 5 · 12 + 5 · 12) = 2(25 + 60 + 60) = 2(145) = 290 in²
Answer:
A, C, and E
Step-by-step explanation:
i just substituted the d and q values
True because if you are multiplying any number by a fraction smaller than 1, you are practically dividing it so the number become smaller. For example, multiplying by 1/2 is findind the half so its gonna get smaller.