If O is the orthocenter, O=(xo, yo)
such that xo=(2+0 + 2)/3, so xo= 4/3, so the answer must be
<span>d) (4/3, 7/12)
</span>
Answer:
The solution is:
![-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-\frac{6}{11}\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-\frac{6}{11}]\end{bmatrix}](https://tex.z-dn.net/?f=-7r-4%5Cge%20%5C%3A%5C%3A4r%2B2%5Cquad%20%5C%3A%3A%5Cquad%20%5C%3A%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BDecimal%3A%7D%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-0.54545%5Cdots%20%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%5C%3A%2C%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5D%5Cend%7Bbmatrix%7D)
Please check the attached line graph below.
Step-by-step explanation:
Given the expression

Add 4 to both sides

Simplify

Subtract 4r from both sides

Simplify

Multiply both sides by -1 (reverses the inequality)

Simplify

Divide both sides by 11

Simplify

Therefore, the solution is:
![-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-\frac{6}{11}\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-\frac{6}{11}]\end{bmatrix}](https://tex.z-dn.net/?f=-7r-4%5Cge%20%5C%3A%5C%3A4r%2B2%5Cquad%20%5C%3A%3A%5Cquad%20%5C%3A%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BDecimal%3A%7D%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-0.54545%5Cdots%20%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%5C%3A%2C%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5D%5Cend%7Bbmatrix%7D)
Please check the attached line graph below.
The answer would be -3.333333
Step 1: (1÷3)= 0.333333
Step 2: 3+0.333333= 3.333333
Step 3: Finally you would bring the negative sign down and the answer would be -3.333333! I hope this helps :)
Answer:
The equation in slope-intercept form of the line that crossed the x-axis at 36 and is perpendicular to the line represented by y = -4/9x + 5 is y=9/4x +36
Step-by-step explanation: