Antonio runs 1,460 miles in one year
3/2x - 4 = 16
Add 4 to both sides.
3/2x = 20
Multiply by 2/3.
x = 13 1/3
Answer:
(0,-5). y=mx+b or -5=0 × 0+b, or solving for b: b=-5-(0)(0). b=-5.
(2,-5). y=mx+b or -5=0 × 2+b, or solving for b: b=-5-(0)(2). b=-5.
y=-5
Answer:
The correct option is A. x – 1 < n < 3x + 5
Step-by-step explanation:
In a triangle sum of any two sides is always greater than the third side.
Now, the sides of the triangle are given to be :
2x + 2, x + 3 , n
Now, first take 2x + 2 and x + 3 as two sides and the side of length n as third side.
By using the property that sum of two sides is always greater than the third side in a triangle.
⇒ 2x + 2 + x + 3 > n
⇒ 3x + 5 > n ......(1)
Now, take n and x + 3 as two sides and the side of length 2x + 2 as the third side of triangle.
So, by the property, we have :
n + x + 3 > 2x + 2
⇒ n > x - 1 ...........(2)
From both the equations (1) and (2) , We get :
x – 1 < n < 3x + 5
Therefore, The correct option is A. x – 1 < n < 3x + 5
Let us take 'a' in the place of 'y' so the equation becomes
(y+x) (ax+b)
Step-by-step explanation:
<u>Step 1:</u>
(a + x) (ax + b)
<u>Step 2: Proof</u>
Checking polynomial identity.
(ax+b )(x+a) = FOIL
(ax+b)(x+a)
ax^2+a^2x is the First Term in the FOIL
ax^2 + a^2x + bx + ab
(ax+b)(x+a)+bx+ab is the Second Term in the FOIL
Add both expressions together from First and Second Term
= ax^2 + a^2x + bx + ab
<u>Step 3: Proof
</u>
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
Identity is Found
.
Trying with numbers now
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
((2*5)+8)(5+2) =(2*5^2)+(2^2*5)+(8*5)+(2*8)
((10)+8)(7) =(2*25)+(4*5)+(40)+(16)
(18)(7) =(50)+(20)+(56)
126 =126