Answer:

Step-by-step explanation:
Given

First, we need to list the multiples of 5

Then, multiples of 3
Next, is to list out the common elements in both


The required probability is then calculated as thus:



Answer:
D i think
Step-by-step explanation:
Complete the square.


Use de Moivre's theorem to compute the square roots of the right side.


Now, taking square roots on both sides, we have


Use de Moivre's theorem again to take square roots on both sides.



![\implies z = {w_2}^{1/2} = \boxed{\pm \sqrt[4]{3} \, \exp\left(-i\dfrac{5\pi}{12}\right)}](https://tex.z-dn.net/?f=%5Cimplies%20z%20%3D%20%7Bw_2%7D%5E%7B1%2F2%7D%20%3D%20%5Cboxed%7B%5Cpm%20%5Csqrt%5B4%5D%7B3%7D%20%5C%2C%20%5Cexp%5Cleft%28-i%5Cdfrac%7B5%5Cpi%7D%7B12%7D%5Cright%29%7D)
Answer:
what is the question because I don't understand what you mean