Answer:
~8.66cm
Step-by-step explanation:
The length of a diagonal of a rectangular of sides a and b is

in a cube, we can start by computing the diagonal of a rectangular side/wall containing A and then the diagonal of the rectangle formed by that diagonal and the edge leading to A. If the cube has sides a, b and c, we infer that the length is:

Using this reasoning, we can prove that in a n-dimensional space, the length of the longest diagonal of a hypercube of edge lengths
is

So the solution here is

Answer:
y(-4) = 5
y'(-4) = -7
Step-by-step explanation:
Hi!
Since the tangent line T and the curve y must coincide at x=-4
y(-4) = T(-4) = 5
On the other hand, the derivative of the curve evaluated at -4 y'(x=-4) must be the slope of the tangent line. Which inspecting the tangent line T(x) is -7
That is:
y'(-4) = -7
Answer:
answer is D : 2 3/8
Step-by-step explanation:
The answer is X=19/2 y=10