Answer:
Three consecutive multiples are 110,121 and 132 which has the sum of 363. 33C = 363; C = 33, By substituting C = 33 in numbers 11C, 11(C – 1) and 11(C + 1) we get values 110, 121, 132.
Answer:
the slope intercept form 3y-2x=9 is y=2/3x+3
V=PiR^2H/3
Pi = 3.14 (use pi symbol on calculator)
R is the radius if the cones bottom
H is the height of the cone
Answer:
f(x) = x^2 (x + 7i)(x - 7i)
Step-by-step explanation:
Factoring out x^2 gives ...
f(x) = x^2(x^2 +49)
The factor with 49 can be considered to be the difference of two squares, where one of the squares is -49. Then its square root is ±7i, and the factorization of that term is ...
x^2 +49 = (x +7i)(x -7i)
So, the overall factorization of f(x) is ...
f(x) = x^2(x +7i)(x -7i)
Answer:
<em>The correct option is C.</em>
Step-by-step explanation:
<u>Root Of Complex Numbers</u>
If a complex number is expressed in polar form as

Then the cubic roots of Z are
![\displaystyle Z_1=\left(\sqrt[3]{r},\frac{\theta}{3}\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z_1%3D%5Cleft%28%5Csqrt%5B3%5D%7Br%7D%2C%5Cfrac%7B%5Ctheta%7D%7B3%7D%5Cright%29)
![\displaystyle Z_2=\left(\sqrt[3]{r},\frac{\theta}{3}+120^o\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z_2%3D%5Cleft%28%5Csqrt%5B3%5D%7Br%7D%2C%5Cfrac%7B%5Ctheta%7D%7B3%7D%2B120%5Eo%5Cright%29)
![\displaystyle Z_3=\left(\sqrt[3]{r},\frac{\theta}{3}+240^o\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z_3%3D%5Cleft%28%5Csqrt%5B3%5D%7Br%7D%2C%5Cfrac%7B%5Ctheta%7D%7B3%7D%2B240%5Eo%5Cright%29)
We are given the complex number in rectangular components

Converting to polar form


It's located in the second quadrant, so

The number if polar form is

Its cubic roots are
![\displaystyle Z_1=\left(\sqrt[3]{2},\frac{120^o}{3}\right)=\left(\sqrt[3]{2},40^o\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z_1%3D%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%2C%5Cfrac%7B120%5Eo%7D%7B3%7D%5Cright%29%3D%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%2C40%5Eo%5Cright%29)
![\displaystyle Z_2=\left(\sqrt[3]{2},40^o+120^o\right)=\left(\sqrt[3]{2},160^o\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z_2%3D%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%2C40%5Eo%2B120%5Eo%5Cright%29%3D%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%2C160%5Eo%5Cright%29)
![\displaystyle Z_3=\left(\sqrt[3]{2},40^o+240^o\right)=\left(\sqrt[3]{2},280^o\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Z_3%3D%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%2C40%5Eo%2B240%5Eo%5Cright%29%3D%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%2C280%5Eo%5Cright%29)
Converting the first solution to rectangular coordinates
![z_1=\sqrt[3]{2}(\ cos40^o+i\ sin40^o)](https://tex.z-dn.net/?f=z_1%3D%5Csqrt%5B3%5D%7B2%7D%28%5C%20cos40%5Eo%2Bi%5C%20sin40%5Eo%29)
The correct option is C.