Since you want to use the SAS theorem, you must find sides that are either side of angles BAC and DAE. You have already made use of sides AE and AC, so the other sides you need to choose are AB and AD. The appropriate relationship for similarity is ...
... AD = 2AB
since you want the sides of triangle ADE to be twice then length of those in triangle ABC.
You would do three square in length and 31 in width
Naw bruv i’m doing the same problems rn and i’m struggling gl tho
Answer:
- Solution of equation ( x ) = <u>7</u>
Step-by-step explanation:
In this question we have given with an equation that is <u>4</u><u> </u><u>(</u><u> </u><u>5</u><u>x</u><u> </u><u>-</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>9</u><u>x</u><u> </u><u>+</u><u> </u><u>3 </u><u>)</u><u>.</u> And we are asked to solve this equation that means we have to find the value of <u>x</u><u>.</u><u> </u>
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
<u>
</u>
<u>Step </u><u>1</u><u> </u><u>:</u> Removing parenthesis :

<u>Step </u><u>2</u><u> </u><u>:</u> Adding 8 from both sides :

On further calculations we get :

<u>Step </u><u>3 </u><u>:</u> Subtracting 18 from both sides :

On further calculations we get :

<u>Step </u><u>4</u><u> </u><u>:</u> Dividing with 2 on both sides :

On further calculations we get :

- <u>Therefore</u><u>,</u><u> </u><u>solution</u><u> </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>or </u><u>we </u><u>can </u><u>say </u><u>that </u><u>value </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>.</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
We are verifying our answer by substituting value of x in given equation. So ,
- 4 ( 5x - 2 ) = 2 ( 9x + 3 )
- 4 [ 5 ( 7 ) - 2 ] = 2 [ 9 ( 7 ) + 3 ]
- 4 ( 35 - 2 ) = 2 ( 63 + 3 )
<u>Therefore</u><u>,</u><u> </u><u>our </u><u>value</u><u> for</u><u> x</u><u> is</u><u> </u><u>correct </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
An = a1 * r^(n-1)
n = term to find = 18
a1 = first term = 3
r = common ratio = 4/3
now we sub
a18 = 3 * 4/3^(18 - 1)
a18 = 3 * 4/3^17
a18 = 3 * 133
a18 = 399