Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
B) energy is absorbed by the reaction
is right answer.
Answer:
Temperature decreases and density increases
Explanation:
Let us remember that density of a material increases as the temperature of the material decreases. So the cooler a material becomes, the denser it becomes also.
Between points B and C, the material rapidly cools down and the temperature decreases accordingly. This ultimately results in an increase in density since cooler materials are denser than hot materials.
Answer:
See explanation
Explanation:
The shorthand nuclear reaction equations have been given; the first particle in the parentheses is a reactant particle while the second particle is a product particle. These can now be rewritten as the longhand equations as follows;
238/92U + 4/2 He -------> 241/94Pu + 1/0 n
238/92U + 4/2 He ------> 241/94Pu + 1/0 n
14/7N + 4/2 He------> 17/8O + 1/1 p
56/26Fe + 2 4/2 He----> 60/29Cu + 4/2 He