1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
3 years ago
10

2〖sen〗^2 x+3 senx+1=0

Mathematics
1 answer:
KonstantinChe [14]3 years ago
7 0

2 sin²(<em>x</em>) + 3 sin(<em>x</em>) + 1 = 0

(2 sin(<em>x</em>) + 1) (sin(<em>x</em>) + 1) = 0

2 sin(<em>x</em>) + 1 = 0   OR   sin(<em>x</em>) + 1 = 0

sin(<em>x</em>) = -1/2   OR   sin(<em>x</em>) = -1

The first equation gives two solution sets,

<em>x</em> = sin⁻¹(-1/2) + 2<em>nπ</em> = -<em>π</em>/6 + 2<em>nπ</em>

<em>x</em> = <em>π</em> - sin⁻¹(-1/2) + 2<em>nπ</em> = 5<em>π</em>/6 + 2<em>nπ</em>

(where <em>n</em> is any integer), while the second equation gives

<em>x</em> = sin⁻¹(-1) + 2<em>nπ</em> = -<em>π</em>/2 + 2<em>nπ</em>

2 cot(<em>x</em>) sec(<em>x</em>) + 2 sec(<em>x</em>) + cot(<em>x</em>) + 1 = 0

2 sec(<em>x</em>) (cot(<em>x</em>) + 1) + cot(<em>x</em>) + 1 = 0

(2 sec(<em>x</em>) + 1) (cot(<em>x</em>) + 1) = 0

2 sec(<em>x</em>) + 1 = 0   OR   cot(<em>x</em>) + 1 = 0

sec(<em>x</em>) = -1/2   OR   cot(<em>x</em>) = -1

cos(<em>x</em>) = -2   OR   tan(<em>x</em>) = -1

The first equation has no (real) solutions, since -1 ≤ cos(<em>x</em>) ≤ 1 for all (real) <em>x</em>. The second equation gives

<em>x</em> = tan⁻¹(-1) + <em>nπ</em> = -<em>π</em>/4 + <em>nπ</em>

<em />

sin(<em>x</em>) cos²(<em>x</em>) = sin(<em>x</em>)

sin(<em>x</em>) cos²(<em>x</em>) - sin(<em>x</em>) = 0

sin(<em>x</em>) (cos²(<em>x</em>) - 1) = 0

sin(<em>x</em>) (-sin²(<em>x</em>)) = 0

sin³(<em>x</em>) = 0

sin(<em>x</em>) = 0

<em>x</em> = sin⁻¹(0) + 2<em>nπ</em> = 2<em>nπ</em>

<em />

2 cos²(<em>x</em>) + 2 sin(<em>x</em>) - 12 = 0

2 (1 - sin²(<em>x</em>)) + 2 sin(<em>x</em>) - 12 = 0

-2 sin²(<em>x</em>) + 2 sin(<em>x</em>) - 10 = 0

sin²(<em>x</em>) - sin(<em>x</em>) + 5 = 0

Using the quadratic formula, we get

sin(<em>x</em>) = (1 ± √(1 - 20)) / 2 = (1 ± √(-19)) / 2

but the square root contains a negative number, which means there is no real solution.

2 csc²(<em>x</em>) + cot²(<em>x</em>) - 3 = 0

2 (cot²(<em>x</em>) + 1) + cot²(<em>x</em>) - 3 = 0

3 cot²(<em>x</em>) - 1 = 0

cot²(<em>x</em>) = 1/3

tan²(<em>x</em>) = 3

tan(<em>x</em>) = ± √3

<em>x</em> = tan⁻¹(√3) + <em>nπ</em>  OR   <em>x</em> = tan⁻¹(-√3) + <em>nπ</em>

<em>x</em> = <em>π</em>/3 + <em>nπ</em>   OR   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

You might be interested in
what is the common number to be subtracted from each term of the ratio 11:8 to get the new ratio 2:1.?​
JulijaS [17]

Answer:

5 should be subtracted  from each term

Step-by-step explanation:

\frac{11-x}{8-x}=\frac{2}{1}

Cross multiply,

1 * (11 - x) = 2*(8-x)

11 -x = 2*8 - 2*x

11 - x = 16 - 2x

Subtract 11 from both sides,

-x = 16 - 2x - 11

-x = 5 - 2x

Add 2x to both sides

-x +2x = 5 - 2 + 2x

x = 5

7 0
3 years ago
Complete the statements about the two cones. The volumes of the cones are equal when . If a &gt; b, then the cross-sectional are
Elenna [48]

Answer: a=b , greater than

Step-by-step explanation:

7 0
3 years ago
Find a solution x = x(t) of the equation x′ + 2x = t2 + 4t + 7 in the form of a quadratic function of t, that is, of the form x(
Temka [501]
The particular quadratic solution to the ODE is found as follows:

x=at^2+bt+c
x'=2at+b

(2at+b)+2(at^2+bt+c)=t^2+4t+7
2at^2+(2a+2b)t+(b+2c)=t^2+4t+7

\begin{cases}2a=1\\2(a+b)=4\\b+2c=7\end{cases}\implies a=\dfrac12,b=\dfrac32,c=\dfrac{11}4

Note that there's also the fundamental solution to account for, which is obtained from the characteristic equation for the ODE:

x'+2x=0\implies r+2=0\implies r=-2

so that x_c=Ce^{-2t} is a characteristic solution to the ODE, and the general solution would be

x=Ce^{-2t}+\dfrac{t^2}2+\dfrac{3t}2+\dfrac{11}4
4 0
3 years ago
If f(x)=4x^2+5x, what is f(a+4)
Firlakuza [10]
I think it might be 20 I don't really know that one
3 0
3 years ago
Read 2 more answers
Given an int variable n that has already been declared and initialized to a positive value, and another int variable j that has
Inessa05 [86]

Answer:

for(j = n; j > 0; j--)

System.out.print(\"*\");

Step-by-step explanation:

-A for loop is a repetition control structure.

-It allows the efficiency to write a loop that would otherwise be written a couple of times.

-The output is a single line comprising n asterisks,

-The number of asterisks printed will be equivalent to the n-value declared.

7 0
3 years ago
Other questions:
  • 74 increased by 3 times y
    5·1 answer
  • What is 4.8 times 3.7
    11·2 answers
  • Shakespear's Pizza sells 1 comma 100 large Vegi Pizzas per week for ​$16 a pizza. When the owner offers a​ $5 discount, the week
    8·1 answer
  • which of the following numbers is part of the solution set for the inequality -8 greater than -4t+5 a. 13/4 or b. 2 or c 6 or d.
    6·1 answer
  • At the art fair, 95 artists exhibited their work. Of those 95 artists, 25 showed sculptures and 48 showed paintings. If 12 showe
    11·2 answers
  • Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and a CD player. Let A1 be the ev
    9·1 answer
  • A gardener wants to fence a circular garden of diameter 21 m. Find the length of the rope he needs to purchase, if he makes 2 ro
    8·1 answer
  • If anyone knows the anwser pls tell me
    11·1 answer
  • PLEASE HELP mathematics
    12·2 answers
  • Can someone please help me with this question
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!