Answer:
the answer is the top choice
Answer:
131.3 miles
Step-by-step explanation:
The two cars are moving from different directions. The total distance between the two cars = 118 miles + 256 miles = 374 miles.
Let us assume that the two cars meet at point O, let the distance between car c and O be d₁, the distance between car d and point O be d₂, hence:
d₁ + d₂ = 374 miles (1)
Let speed of car d be x mph, therefore speed of car c = 2x mph (twice of car d). If it take the cars t hours to meet at the same point, hence
For car c:
2x = d₁/t
t = d₁ / 2x
For car d;
x = d₂/t
t = d₂/ x
Since it takes both cars the same time to meet at the same point, therefore:
d₁/2x = d₂ / x
d₁ = 2d₂
d₁ - 2d₂ = 0 (2)
Solving equation 1 and 2 simultaneously gives d₁ = 249.3 miles, d₂ = 124.7 miles
Therefore the distance from point of meet to Boston = 249.3 - 118 = 131.3 miles
Answer:
-6p^5+48p
Step-by-step explanation:
-6p (p^4- 8)= -6p^5+48p
Answer:
30
Step-by-step explanation:
Solve for the hypotenuse for the bottom triangle (a^2+ b^2=c^2). You should get 40. After solving that you should be able to solve for c in the top triangle which should get you 30.