Explanation:
The pressure exerted by vapors or gas on the surface of a liquid is known as vapor pressure.
This means that weaker is the intermolecular forces present in a substance more easily it can form vapors. As a result, it will have high vapor pressure.
As substance B has high vapor pressure which means that it has weak intermolecular forces.
Also, stronger is the intermolecular forces present in a substance more will be its boiling point. Hence, more energy or temperature is required to break the bonds. Hence, substance A has higher boiling point and high heat of vaporization.
When surrounding pressure is less than or equal to its vapor pressure then substance B boils into the gas phase. Hence, substance B will be a gas at 300 mm Hg.
Therefore, we can conclude that characteristics of the two substances will be as follows.
(a) Substance B - has weaker intermoclcular
(b) Substance A - has a higher boiling point
(c) Substance B - is a gas at 300 mm Hg
(d) Substance A - has a higher heat of vaporization
The answer is A. How this helps
Answer:
first choose which ones that u think is best it may be wrong
Explanation: next time add description please so that i can see
Answer:
The trachea, commonly known as the windpipe, is a tube about 4 inches long and less than an inch in diameter in most people. The trachea begins just under the larynx (voice box) and runs down behind the breastbone (sternum).
Explanation:
Answer:
The molar mass of the compound given is 182.182 g/mol.
Explanation:
To calculate the molar mass of the compound, we must multiply the number of moles of each element by the the individual molar mass of each element and add them together.
Let's start with Calcium. The molar mass of Calcium is 40.078. In this compound, we have three moles of Calcium, so we should multiply this number by 3.
40.078 g/mol * 3 mol = 120.234 g
Now, let's do the same for Phosphorus.
30.974 g/mol * 2 g/mol = 61.948 g
To find the molar mass of the entire compound, we should add these two values together.
120.234 g + 61.948 g = 182.182 g
Therefore, the correct answer is 182.182 g/mol.
Hope this helps!