2, because they are all a form of water.. but just in different states of matter depending on their form
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ J.J Thomson was the first to discover atoms. He discovered atoms in 1897.
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ
Answer:
24 hours
Explanation:
The computation is shown below:
The needed mole of
is
= 5 ÷22.4 = n
Also 1 mole of
required four electric charge
Now the charge needed is
= n × 4 × 96,500 C
= 4 × 96,500 × 5 c ÷ 22.4
= 86160.714 C
Now
q = i t
t = q ÷ i
= 86160.714 C ÷ 0.995
= 86593.7 seconds
= 24 hours
Hence, the correct option is A.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Equate the gravitational force to the electrostatic force:
<span>KC²/D² = Gm²/D² → C = m√[G/K] = 7.6√[6.67E-11/9E9] = 6.54E-10 coulombs </span>
<span>Number of electrons N = 6.24E18*C = 4.083E9 electrons</span>
Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.