Answer:
95.7 g CO to the nearest tenth.
Explanation:
2C + O2 ---> 2CO
Using relative atomic masses:
24 g C produces 2*12 + 2*16 g CO.
So 41 g produces ( (2*12 + 2*16) * 41 ) / 24
= 95.7 g CO,
Starch is present in two forms- Amylose- which is linear chain of glucose and Amylopectin is a branched chain polymer of glucose.glycogen is found in animals and is stored in liver.
Answer:
513.74 g of solution
Explanation:
% Mass grams are defined as the <em>grams that are dissolved in salt</em> (in this case, it would be <em>potassium nitrate</em>) <em>dissolved every 100 g of the solution</em>. Having this information, you can calculate the amount of solution that has dissolved 18.7 g of potassium nitrate, which is what we want to obtain.
The relationship is:
3.64 g of potassium nitrate _____ 100 g solution
18.7 g of potassium nitrate _____ X = 513.74 g of solution
Calculation: 18.7g x 100g / 3.64g = 513.74 g of solution
So, <em>I need 513.74 g of solution to get 18.7g of potassium nitrate by evaporating it</em>.
Answer:
Explanation:
Word equation:
sulfuric acid + ammonium hydroxide → ammonium sulfate + water
Chemical equation:
H₂SO₄ + NH₄OH → (NH₄)₂SO₄ + H₂O
Balanced chemical equation:
H₂SO₄ + 2NH₄OH → (NH₄)₂SO₄ + 2H₂O
The given reaction is the reaction of acid with base. When acid and base react salt and water are produced. In given reaction an acid sulfuric acid and base ammonium hydroxide react and form ammonium sulfate salt and water. The given reaction also follow the law of conservation of mass.
Steps to balance the equation:
Steps 1;
H₂SO₄ + NH₄OH → (NH₄)₂SO₄ + H₂O
H = 7 H = 10
S = 1 S = 1
O = 5 O = 5
N = 1 N = 2
Step 2:
H₂SO₄ + 2NH₄OH → (NH₄)₂SO₄ + H₂O
H = 12 H = 10
S = 1 S = 1
O = 6 O = 5
N = 2 N = 2
Step 3:
H₂SO₄ + 2NH₄OH → (NH₄)₂SO₄ + 2H₂O
H = 12 H = 12
S = 1 S = 1
O = 6 O = 6
N = 2 N = 2
Answer:
All of these are true
Explanation:
A buffer solution in chemistry is a solution that resists changes in pH when an acid or base is added to it. It is a solution that contains a weak acid and its conjugate base (anion) or a weak base and its conjugate acid.
A buffer is able to resist a change in pH due to the conjugate base and conjugate acid of the weak acids and bases contained in them respectively. The conjugate base/acid are present in an equilibrium quantity with their acid/base counterparts and help to neutralize or react with any additional H+ or OH- from an acid or base added to their solution.
However, when a strong acid or base is added to the buffer solution, there is only a slight change which practically does not change the pH of the solution.
Hence, all of the above options about a buffered solution is true.