Answer:
volume of the gas is 5.0L
Explanation:
Using Boyle's law that state the pressure of a gas is inversely proportional to volume of it occupies when temperature is constant, it is possible to write:
P₁V₁ = P₂V₂
<em>Where P is pressure, V is volume and 1 and 2 are initial and final states.</em>
<em />
If initial volume is 2.5L, initial pressure is 2.0atm and 1.0atm is final pressure, final volume is:
2.0atm*2.5L = 1atm V₂
5.0L = V₂
Thus, <em>volume of the gas is 5.0L</em>.
The "sub shells" are the orientations and shapes for your orbitals, going in order by Shells are a collection of subshells with the same principle quantum number, and subshells are a collection of orbitals with the same principle quantum number and angular momentum quantum number. Hope this helps :)
Answer:
The molar mass of the gas is 44 g/mol
Explanation:
It is possible to solve this problem using Graham's law that says: Rates of effusion are inversely dependent on the square of the mass of each gas. That is:

If rate of effusion of nitrogen is Xdistance / 48s and for the unknown gas is X distance / 60s and mass of nitrogen gas is 28g/mol (N₂):

6,61 = √M₂
44g/mol = M₂
<em>The molar mass of the gas is 44 g/mol</em>
<em></em>
I hope it helps!