Hello
A. will be your answer.
Hoped This Helped! :D
Based on the calculations, the measure of angle BDF and CFG are 100° and 38° respectively.
<h3>The condition for two parallel lines.</h3>
In Geometry, two (2) straight lines are considered to be parallel if their slopes are the same (equal) and they have different y-intercepts. This ultimately implies that, two (2) straight lines are parallel under the following conditions:
m₁ = m₂
<u>Note:</u> m is the slope.
<h3>What is the alternate interior angles theorem?</h3>
The alternate interior angles theorem states that when two (2) parallel lines are cut through by a transversal, the alternate interior angles that are formed are congruent.
Based on the alternate interior angles theorem, we can infer and logically deduce the following properties from the diagram (see attachment):
For angle BDF, we have:
<BDF = <BDH + <HDF
<BDF = 38° + 62°
<BDF = 100°.
Since angles BDF and DFC are linear pair, they are supplementary angles. Thus, we have:
∠BDF + <DFC = 180°
<DFC = 180 - ∠BDF
<DFC = 180 - 100
<DFC = 80°.
For angle CFG, we have:
∠DFE + <DFC + <CFG= 180°
<CFG = 180° - ∠DFE - <DFC
<CFG = 180° - 62° - 80°
<CFG = 38°.
Read more on parallel lines here: brainly.com/question/3851016
#SPJ1
ANSWER
To graph the function
we need to plot some few points within one period. Since the interval is not given, we shall use
'
.
We plot the above points to obtain the graph as shown in the attachment.
Answer:
sin(2A) = (2√2 + √3) / 6
Step-by-step explanation:
2A = (A+B) + (A−B)
sin(2A) = sin((A+B) + (A−B))
Angle sum formula:
sin(2A) = sin(A+B) cos(A−B) + sin(A−B) cos(A+B)
sin(2A) = 1/2 cos(A−B) + 1/3 cos(A+B)
Pythagorean identity:
sin(2A) = 1/2 √[1 − sin²(A−B)] + 1/3 √[1 − sin²(A+B)]
sin(2A) = 1/2 √(1 − 1/9) + 1/3 √(1 − 1/4)
sin(2A) = 1/2 √(8/9) + 1/3 √(3/4)
sin(2A) = 1/3 √2 + 1/6 √3
sin(2A) = (2√2 + √3) / 6