Answer and Explanation:
<em><u>The number of observed individuals</u></em>:
<u><em>Total number of individuals, N</em></u>= 87 = 42 + 24 + 21
<u><em>Allelic frequencies</em></u>:
- f(p) = (2 x AA + AG)/ 2 x N
f (p)= (2 x 42 + 24) /2 x 87
f (p) = (84 + 24) / 174
f (p)= 108 / 174
f (p) = 0.62
- f (q) = (2 x GG + AG)/2 x N
f (q) = (2 x 21 + 24 )/2 x 87
f (q) = (42 + 24)/ 174
f (q) = 66/174
f (q) = 0.38
p + q = 1
0.62 + 0.38 = 1
<em><u>The expected genotypic frequency:</u></em>
- F (AG) = 2 x A x G = 2 x 0.62 x 0.38 = 0.4712
AA + AG + GG = 0.3844 + 0.4712 + 0.1444 = 1
<u><em>The number of expected individuals</em></u>:
AA= (0.62)² x 87 = 0.3844 x 87 = 33.44
AG= (0.4712) x 87 = 40.99
GG= (0.38)² x 87 = 12.563
<u><em>Total number of expected individuals</em></u> = 33.44 + 40.99 + 12.563 = 87
<u><em>Chi square</em></u>= sum (O-E)²/E
AA=(42 - 33.44) ² / 33.44
AA= 2.2
AB= (24 - 40.99)²/ 40.99
AB=7.04
BB= (21-12.563)²/12.563
BB= 5.66
<u><em>Chi square</em></u>= sum ((O-E)²/E) = 2.2 + 7.04 + 5.66 = 14.9
<u><em>Degrees of freedom</em></u> = genotypes - alleles = 3 - 1 = 2
p value less than 0.05
There is enough evidence to reject the nule hypothesis. The genotype frequencies are not in equilibrium.