Consider the closed region

bounded simultaneously by the paraboloid and plane, jointly denoted

. By the divergence theorem,

And since we have

the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have




Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by

, we have

Parameterize

by


which would give a unit normal vector of

. However, the divergence theorem requires that the closed surface

be oriented with outward-pointing normal vectors, which means we should instead use

.
Now,



So, the flux over the paraboloid alone is
There's a website called desmos.com. That website can tell you the answer
Answer:
The equation of the line that goes through points (1,1) and (3,7) is 
Step-by-step explanation:
Determine the equation of the line that goes through points (1,1) and (3,7)
We can write the equation of line in slope-intercept form
where m is slope and b is y-intercept.
We need to find slope and y-intercept.
Finding Slope
Slope can be found using formula: 
We have 
Putting values and finding slope

We get Slope = 3
Finding y-intercept
y-intercept can be found using point (1,1) and slope m = 3

We get y-intercept b = -2
So, equation of line having slope m=3 and y-intercept b = -2 is:

The equation of the line that goes through points (1,1) and (3,7) is 
Answer:
correct choice is option 3 - figure C.
Step-by-step explanation:
When you reflect a point across the line y = x, the x-coordinate and y-coordinate change places. This gives you such reflection rule:
From the diagram:
L(3,1), M(4,3), N(5,3) and P(4,1).
Using the reflection rule, you can find coordinates of image points:
L'(1,3), M'(3,4), N'(3,5) and P'(1,4).
As you can see, these are coordinates of vertices of the figure C.
<em>on e2020 its c </em>
<em>give brainliest if this helps please (;</em>
Answer:
(-9) + (-2) = -11
Step-by-step explanation:
The first arrow on the number line starts from 0, moves downwards 9 units from 0.
We would write this as -9.
Also, the next arrow starts moves from -9, 2 units downwards.
We would write this as -2
The addition equation would be:
(-9) + (-2) = -11