Write the coeeficientes of the polynomial in order:
| 1 - 5 6 - 30
|
|
|
------------------------
After some trials you probe with 5
| 1 - 5 6 - 30
|
|
5 | 5 0 30
-----------------------------
1 0 6 0 <---- residue
Given that the residue is 0, 5 is a root.
The quotient is x^2 + 6 = 0, which does not have a real root.
Therefore, 5 is the only root. You can prove it by solving the polynomial x^2 + 6 = 0.
Part A
<h3>Answer:
h^2 + 4h</h3>
-------------------
Explanation:
We multiply the length and height to get the area
area = (length)*(height)
area = (h+4)*(h)
area = h(h+4)
area = h^2 + 4h .... apply the distributive property
The units for the area are in square inches.
===========================================================
Part B
<h3>Answer:
h^2 + 16h + 60</h3>
-------------------
Explanation:
If we add a 3 inch frame along the border, then we're adding two copies of 3 inches along the bottom side. The h+4 along the bottom updates to h+4+3+3 = h+10 along the bottom.
Similarly, along the vertical side we'd have the h go to h+3+3 = h+6
The old rectangle that was h by h+4 is now h+6 by h+10
Multiply these expressions to find the area
area = length*width
area = (h+6)(h+10)
area = x(h+10) ..... replace h+6 with x
area = xh + 10x .... distribute
area = h( x ) + 10( x )
area = h( h+6 ) + 10( h+6 ) .... plug in x = h+6
area = h^2+6h + 10h+60 .... distribute again twice more
area = h^2 + 16h + 60
You can also use the box method or the FOIL rule as alternative routes to find the area.
The units for the area are in square inches.
Answer:
Therefore the circumference of the circle is 
Step-by-step explanation:
Let the side of the square be s
and the radius of the circle be r
The perimeter of the square is = 4s
The circumference of the circle is =2πr
Given that the length of the wire is 20 cm.
According to the problem,
4s + 2πr =20
⇒2s+πr =10

The area of the circle is = πr²
The area of the square is = s²
A represent the total area of the square and circle.
A=πr²+s²
Putting the value of s




For maximum or minimum 
Differentiating with respect to r

Again differentiating with respect to r
> 0
For maximum or minimum





Therefore at
, A is minimum.
Therefore the circumference of the circle is


It’s called an equilateral triangle because all sides are even. A triangle equals 180 degrees. So, 60 degrees x 3 sides = 180 degrees
1.91 to the nearest tenth is 1.9