1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
12

Let D be the smaller cap cut from a solid ball of radius 8 units by a plane 4 units from the center of the sphere. Express the v

olume of D as an iterated triple integral in ​(a)​ spherical, ​(b)​ cylindrical, and ​(c) rectangular coordinates. In each​ case, let the center of the solid ball be the origin and let the plane be zequals4. Then ​(d) find the volume by evaluating one of the three triple integrals.
Mathematics
1 answer:
natima [27]3 years ago
3 0

Answer:

Step-by-step explanation:

The equation of the sphere, centered a the origin is given by x^2+y^2+z^2 = 64. Then, when z=4, we get

x^2+y^2= 64-16 = 48.

This equation corresponds to a circle of radius 4\sqrt[]{3} in the x-y plane

c) We will use the previous analysis to define the limits in cartesian and polar coordinates. At first, we now that x varies from -4\sqrt[]{3} up to 4\sqrt[]{3}. This is by taking y =0 and seeing the furthest points of x that lay on the circle. Then, we know that y varies from -\sqrt[]{48-x^2} and \sqrt[]{48-x^2}, this is again because y must lie in the interior of the circle we found. Finally, we know that z goes from 4 up to the sphere, that is , z goes from 4 up to \sqrt[]{64-x^2-y^2}

Then, the triple integral that gives us the volume of D in cartesian coordinates is

\int_{-4\sqrt[]{3}}^{4\sqrt[]{3}}\int_{-\sqrt[]{48-x^2}}^{\sqrt[]{48-x^2}} \int_{4}^{\sqrt[]{64-x^2-y^2}} dz dy dx.

b) Recall that the cylindrical  coordinates are given by x=r\cos \theta, y = r\sin \theta,z = z, where r corresponds to the distance of the projection onto the x-y plane to the origin. REcall that x^2+y^2 = r^2. WE will find the new limits for each of the new coordinates. NOte that, we got a previous restriction of a circle, so, since \theta[\tex] is the angle between the projection to the x-y plane and the x axis, in order for us to cover the whole circle, we need that [tex]\theta goes from 0 to 2\pi. Also, note that r goes from the origin up to the border of the circle, where r has a value of 4\sqrt[]{3}. Finally, note that Z goes from the plane z=4 up to the sphere itself, where the restriction is \sqrt[]{64-r^2}. So, the following is the integral that gives the wanted volume

\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} \int_{4}^{\sqrt[]{64-r^2}} rdz dr d\theta. Recall that the r factor appears because it is the jacobian associated to the change of variable from cartesian coordinates to polar coordinates. This guarantees us that the integral has the same value. (The explanation on how to compute the jacobian is beyond the scope of this answer).

a) For the spherical coordinates, recall that z = \rho \cos \phi, y = \rho \sin \phi \sin \theta,  x = \rho \sin \phi \cos \theta. where \phi is the angle of the vector with the z axis, which varies from 0 up to pi. Note that when z=4, that angle is constant over the boundary of the circle we found previously. On that circle. Let us calculate the angle by taking a point on the circle and using the formula of the angle between two vectors. If z=4 and x=0, then y=4\sqrt[]{3} if we take the positive square root of 48. So, let us calculate the angle between the vectora=(0,4\sqrt[]{3},4) and the vector b =(0,0,1) which corresponds to the unit vector over the z axis. Let us use the following formula

\cos \phi = \frac{a\cdot b}{||a||||b||} = \frac{(0,4\sqrt[]{3},4)\cdot (0,0,1)}{8}= \frac{1}{2}

Therefore, over the circle, \phi = \frac{\pi}{3}. Note that rho varies from the plane z=4, up to the sphere, where rho is 8. Since z = \rho \cos \phi, then over the plane we have that \rho = \frac{4}{\cos \phi} Then, the following is the desired integral

\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{3}}\int_{\frac{4}{\cos \phi}}^{8}\rho^2 \sin \phi d\rho d\phi d\theta where the new factor is the jacobian for the spherical coordinates.

d ) Let us use the integral in cylindrical coordinates

\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} \int_{4}^{\sqrt[]{64-r^2}} rdz dr d\theta=\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} r (\sqrt[]{64-r^2}-4) dr d\theta=\int_{0}^{2\pi} d \theta \cdot \int_{0}^{4\sqrt[]{3}}r (\sqrt[]{64-r^2}-4)dr= 2\pi \cdot (-2\left.r^{2}\right|_0^{4\sqrt[]{3}})\int_{0}^{4\sqrt[]{3}}r \sqrt[]{64-r^2} dr

Note that we can split the integral since the inner part does not depend on theta on any way. If we use the substitution u = 64-r^2 then \frac{-du}{2} = r dr, then

=-2\pi \cdot \left.(\frac{1}{3}(64-r^2)^{\frac{3}{2}}+2r^{2})\right|_0^{4\sqrt[]{3}}=\frac{320\pi}{3}

You might be interested in
Which is the value of this expression when a = negative 2 and b = negative 3?
Effectus [21]

Answer:

iiiiiiiiiiiiiiiiiiiiiiii believe its 8

Step-by-step explanation:

4 0
4 years ago
Read 2 more answers
Roberto is a fan of the Los Angeles Angels baseball team. Since he works at night he only
tatiyna

Step-by-step explanation:

There are other factors than Roberto coming that could have affected the outcome of the game. For example, maybe the night games were against better teams to generate better ratings in prime time. Moreover, maybe the Angels do better at home due to home-field advantage. There are many factors such as these that could explain why Roberto witnessed such a high win rate at the games he went to, so it cannot be concluded that Roberto's attendance caused the Angels to win.

7 0
2 years ago
17.
Dahasolnce [82]

Answer:

B

Step-by-step explanation:

6 0
2 years ago
What do u have 2 do to solve
Nastasia [14]
5x^2 + 6x +13.88 is what is is simplified hope it helped a bit 
8 0
4 years ago
Read 2 more answers
Twenty students are standing in line to buy food at a football game. The first three students
trapecia [35]

Answer:

they spent $8 each I think

8 0
3 years ago
Read 2 more answers
Other questions:
  • I got 5 but I need the correct answer I guess I got it wrong
    11·1 answer
  • P=3g-7/k solve for g(plz show work
    12·1 answer
  • Two numbers have a difference of 28. What is the sum of their squares if it is a minimum?
    9·1 answer
  • Addition expressions that have the value of -8
    8·1 answer
  • Percent of discount 15%<br> Sale price $146.54
    15·1 answer
  • Posts are 4 1/4 feet in length. Posts must be installed 7/8 feet below ground level, What will be the height of fence?
    6·1 answer
  • My question is asking me..."A sphere and a cylinder have the same radius and height. The volume of the cylinder is 18 centimeter
    7·1 answer
  • Frank made $80 for 5 hours of work,
    12·2 answers
  • In ΔNOP, p = 240 cm, n = 270 cm and ∠O=22°. Find the area of ΔNOP, to the nearest square centimeter.
    6·1 answer
  • Which graph represents the function y=2/3x-2?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!