f(x)=secx.
f'(x)=sec x tan x.
Use the product rule to find f ' '(x).
F ' '(x)=(secxtanx)tanx+secx(sec2x).
So, f ' '(x)=secxtan2x+sec3x.
Evaluate:f ' '(π4)=sec(π4)tan2(π4)+sec3(π4)=(√2)(1)2+(√2)3=√2+2√2=3√2.
Answer:
13/7
Step-by-step explanation:
X + 1/7 = 2
X = 2- 1/7
x = 13/7