Answer:
- zeros: x = -3, -1, +2.
- end behavior: as x approaches -∞, f(x) approaches -∞.
Step-by-step explanation:
I like to use a graphing calculator for finding the zeros of higher order polynomials. The attachment shows them to be at x = -3, -1, +2.
__
The zeros can also be found by trial and error, trying the choices offered by the rational root theorem: ±1, ±2, ±3, ±6. It is easiest to try ±1. Doing so shows that -1 is a root, and the residual quadratic is ...
x² +x -6
which factors as (x -2)(x +3), so telling you the remaining roots are -3 and +2.
___
For any odd-degree polynomial with a positive leading coefficient, the sign of the function will match the sign of x when the magnitude of x gets large. Thus as x approaches negative infinity, so does f(x).
Answer: {x,y} = {27/4,-47/8}
Answer:
Since 60° is one sixth of the entire circle (360°) it means that the length of arc B is 1/6 th of the circumference.
1/6 * (12 * 2π) = 4π
Answer:
im probably wrong but i think it's C
Answer:
10%
Step-by-step explanation:
60% + 30%=90%
so they have 10%of the original amount left.