1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
12

A random variable is a function that assigns numerical values to the outcomes of a random experiment. True or false?

Mathematics
1 answer:
Alex787 [66]3 years ago
4 0

Answer:

FALSE

Step-by-step explanation:

A random variable is a variable whose outcome depends on random criteria, such as a lottery game in which any number can be drawn randomly. That way, a randomized experiment will have random results that are not predetermined. For example, if the lottery has 80 numbers, the random variable function can achieve any result, which will depend on random criteria such as the luck of the player.

You might be interested in
Help me please x<br> trigonometry?
fenix001 [56]

Check the picture below.

make sure your calculator is in Degree mode.

4 0
3 years ago
This dot plot is symmetric, and the data set has no extreme values. 4 5 6 8 910 Which of these measures is the best measure of v
Shkiper50 [21]

Answer:

Step-by-step explanation:

I think it would be c

6 0
3 years ago
Read 2 more answers
Two 120 resistors are connected in parallel across voltage supply of 10 vdc what’s the current in this circuit
Daniel [21]

Answer: 0.167

Step-by-step explanation:

This is an applied mathematics question

Resistors in parallel  ⁾/R = ¹/₁₂₀ + ¹/₁₂₀ since the resistor is two 120

Therefore , resolve into fraction now yield

                       ¹/R                              =         1 + 1  

                                                                    -------

                                                                     120

                                                          =         2/120

                                                          =          ¹/₆₀

Therefore,                                  ¹/R   =      ¹/₆₀

 Cross multiply to get R the resistance

                                                      R  =  60

From formula,                                V = IR where I is the current

There fore making I the subject of the formula

                                                        I = V/R

                                                          = 10/60

                                                          = 0.166

                                                          = 0.167 A, A = ampere which is the unit of current.

                   

4 0
3 years ago
Can someone plz answer B and C
Shkiper50 [21]

B. 
When two lines intersect they form two pairs of opposite angles.
Vertical angles are always congruent, which means that they are equal.
so  m<7 = m<8 or m<3y + 19 = m<5y-29


C. solve for y and measure <7 and <8

 3y + 19 = 5y-29
5y - 3y = 19+29
2y = 48
y = 24

so
5y-29 = 5(24) - 29 = 91
3y + 19 = 3(24) + 19 = 91

so <7 = 180 - 91 = 89
<7 = <8 = 89
4 0
3 years ago
PLEASE HELP Given: △KLM LM=12, m∠K=60°, m∠M=45° Find: Perimeter of △KLM.
worty [1.4K]

We have to find the perimeter of the triangle KLM.

We have been given that the length of the side LM=12, m\angleK=60^\circ, and m\angle M= 45^\circ

Refer the attached image.

In a triangle sum of three angles should be 180^\circ.

So,

m\angle K+m\angle L+m\angle M=180^\circ

Plugging the values of angle K and angle M, we get:

60^\circ+m\angle L+45^\circ=180^\circ

So,

m\angle L=180^\circ-105^\circ=75^\circ

Now, that we have the measure of angle L, we will apply sine rule to find the length of the sides KL and KM.

Using the sine law for the triangle KLM, we get:

\frac{sin K}{LM}=\frac{sin L}{KM}=\frac{sin M}{KL}

Refer the image. Plugging the value of the sides of the triangle KLM and the angles of the triangle KLM, we get:

\frac {sin 60^\circ}{12}=\frac{sin 75^\circ}{y}=\frac{sin 45^\circ}{x}

Now using,

\frac {sin 60^\circ}{12}=\frac{sin 75^\circ}{y}

We get the value of 'y'

y=\frac{sin 75^\circ}{sin 60^\circ} \times 12=\frac{0.9659}{0.866} \times 12=13.38

So the length of the side KM is 13.38 units.

Now using,

\frac {sin 60^\circ}{12}=\frac{sin 45^\circ}{x}

We get the value of 'x'

x=\frac{sin 45^\circ}{sin 60^\circ} \times 12=\frac{0.707}{0.866} \times 12=9.79

So the length of the side KL is 9.79 units.

Now, to find the perimeter of the triangle KLM we need to sum up the length of the sides of the triangle KLM.

The perimeter of the triangle KLM = KL+ LM + KM = 9.79 + 12 + 13.38 = 35.17 units

6 0
3 years ago
Read 2 more answers
Other questions:
  • Geometric Distribution. (Discrete waiting time distribution) It is known that 1% of bits transmitted through a digital transmiss
    13·1 answer
  • Help me find the answer
    8·1 answer
  • Just making sure I'm doing this right
    10·1 answer
  • Evaluate 6h when h= 8.
    6·2 answers
  • Find the x-coordinate of Q' after Q(-2. 5) was reflected over the line y = -x + 4.
    8·1 answer
  • Simplify the expression using the following values:<br> w=−4; v=5; u=2<br> 4w² − v + 3u
    11·1 answer
  • A and b are positive integers and a–b = 3. Evaluate the following:
    14·1 answer
  • Help me please!!
    13·1 answer
  • Even numbers between 21 and 43​
    11·2 answers
  • “Find the values of x and y when the smaller triangle here has the given area! “
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!