Answer: approximately 4.74pKa is when you take the -log10 of your Ka. Therefore, taking the -log10(1.8*10-5), we get a value of approximately 4.74 for our pKa for acetic acid.
Explanation: hope this helps
The balance of forces allows to find the result for the question if the isotope of boron 9.99 una is stable:
-
The boron isotope of mass 9.99 uma is unstable because the repulsive force increases.
The stability of atomic nuclei depends on the balance the force is electrostatic repulsion between the protons and the strong interaction of attraction.
One way to achieve this balance is to increase the separation of the protons with uncharged particles between them, the neutral ones, the strong interaction is of the same magnitude for protons and neutrons, therefore the repulsion is decreased and the strong attraction interaction is maintained. .
In the case of Boron, which has 5 protons, the stable structures have more atomistic 10 and 11 una, which is why it has 5 and 6 neutrons each. Therefore each proton has a neutrons next to it and in the other case a proton at the end has two neutrons, this causes the distance between the protons to increase, decreasing the electrostatic repulsion.
It indicates that we have a Boron nucleus of mass 9.999. The number of protons must remain fixed, therefore there are only 4 neutrons.
Consequently, some of the protons does not have a neutron next to it and can approach the other proton, therefore the electrostatic repulsion increases and the stability of the atom decreases.
In conclusion, using the balance of Forces we can find the result for the question if the isotope of boron 9.99 una is stable:
-
The boron isotope of mass 9.99 amu is unstable because the repulsive force increases.
Learn more about nuclear stability here: brainly.com/question/897383
Answer:
So trees in temperate don't lose their leaves because the weather events aren't harsh enough.
Trees in tropical rainforest don't lose their leaves because they are a different type of tree known as evergreens that are green all year round.
Explanation:
Ok so first we'll define some things
Deciduous Trees= Trees that lose all of their leaves for part of the year.
Trees shed their leaves trees to try and survive harsh weather events.
Temperate deciduous trees lose their leaves in fall to better survive the winter conditions of extreme cold and reduced daylight.
Temperate rainforests = An area that doesn't experience extremely cold or extremely hot temperatures or what we would call harsh weather events.
Broad-leaved trees in tropical rainforests are known evergreen, they are known as this as they are green all year round.
<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O