X(u, v) = (2(v - c) / (d - c) + 1)cos(pi * (u - a) / (2b - 2a))
y(u, v) = (2(v - c) / (d - c) + 1)sin(pi * (u - a) / (2b - 2a))
As
v ranges from c to d, 2(v - c) / (d - c) + 1 will range from 1 to 3,
which is the perfect range for the radius. As u ranges from a to b, pi *
(u - a) / (2b - 2a) will range from 0 to pi/2, which is the perfect
range for the angle. So, this maps the rectangle to R.
Given:
The function is:

To find:
The inverse of the given function, then draw the graphs of function and its inverse.
Solution:
We have,

Step 1: Substitute
.

Step 2: Interchange x and y.

Step 3: Isolate variable y.


Step 4: Substitute
.

Hence, the inverse of the given function is
and the graphs of these functions are shown below.
Polygon Diagonals. The number of diagonals in a polygon = n(n-3)/2, where n is the number of polygon sides. For a convex n-sided polygon, there are n vertices, and from each vertex you can draw n-3 diagonals, so the total number of diagonals that can be drawn is n(n-3).
We know that
(ad)/(bd)=d/d time a/b=a/b since d's cancel
also
if a/b=c/d in simplest form, then a=c and b=d
we have
p/(x^2-5x+6)=(x+4)/(x-2)
therefor
p/(x^2-5x+6)=d/d times (x+4)/(x-2)
p/(x^2-5x+6)=d(x+4)/d(x-2)
therefor
p=d(x+4) and
x^2-5x+6=d(x-2)
we can solve last one
factor
(x-6)(x+1)=d(x-2)
divide both sides by (x-2)
[(x-6)(x+1)]/(x-2)=d
sub
p=d(x+4)
p=([(x-6)(x+1)]/(x-2))(x+4)
Answer:
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 206 mg
Sample mean,
= 217.5 mg
Sample size, n = 14
Sample standard deviation, s = 14.9 mg
Claim:
The mean sodium content for the sports drink is not 206 mg. It is different than 206 mg.
Thus, we design the null and the alternate hypothesis
We use two-tailed t test to perform this hypothesis.