1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
3 years ago
11

In a (blank),one ratio compares a part to a whole

Mathematics
1 answer:
Verdich [7]3 years ago
3 0

Answer:

In a part-to-whole ratio, one ratio compares a part to a whole.

You might be interested in
Solve the absolute value equation, if possible. If there is no solution, explain why.
kipiarov [429]

Answer:

the equation | 5x + 10| = -7 has no solution for x ∈ R.

Step-by-step explanation:

Given the absolute value equation

| 5x + 10| = -7

  • We know that absolute value is always positive.

Reason:

The reason is that the absolute value is the distance from the number 0. Hence, it can not be less than or equal to a negative number.

Conclusion:

Therefore, we conclude that the absolute value of any number would be either 0 or positive as it can not less than or equal to a negative number.

Therefore, the equation | 5x + 10| = -7 has NO SOLUTION for x ∈ R.

7 0
3 years ago
What equation passes through the point (4,3) and is perpendicular to the y-axis
Ksju [112]

Answer:

y=3

Step-by-step explanation:

perpendicular line to Y-axis passing through any point (m,n) is of the form

y=n

so the answer is

y=3

8 0
3 years ago
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
The three point line on a basketball court forms a semi circle. For middle school, it has a diameter of 34 feet. What is the are
valentinak56 [21]

Answer:454.019\ ft^2

Step-by-step explanation:

Given

Diameter of semi-circle is d=34\ ft

So, its radius is r=\dfrac{34}{2}=17\ ft

Area of semi-circle is \dfrac{\pi r^2}{2}

\therefore \text{Area of semi-circle is }=\dfrac{\pi r^2}{2}\\\\\Rightarrow A=\dfrac{\pi \cdot 17^2}{2}\\\\\Rightarrow A=454.019\ ft^2

Thus, the area of semi-circle is 454.019\ ft^2

4 0
3 years ago
Help me pls pls pls :(
svp [43]
it’s pretty confusing so I don’t know
4 0
3 years ago
Read 2 more answers
Other questions:
  • Solve for X then find the measure of DEF. Write your answers in decimal form.
    14·1 answer
  • Find the 10th term in the arithmetic sequence -2, -5, -8, -11
    6·2 answers
  • Using the digits 2,3,5,6,8 find the smallest possible product?
    10·1 answer
  • The mathematical expression 2 e V means:
    10·2 answers
  • Write the numbers in order from greatest to least. <br><br> 0.115, 0.15, 0.005, 0.5
    6·1 answer
  • Acar traveled 50 miles in 40 minutes. Assume that the car will continue at this constant
    13·2 answers
  • ITEM BANK: Move to Bottom 2a + b 2b + a 3(a + b) 4b-a 6a - 2b 1 drag and drop answer here 2 drag and drop answer here 3 drag and
    12·1 answer
  • What is the y-intercept of function g if g(x)= -4f(x)+12
    11·2 answers
  • 5/8 divided by 13/3 integer or simplified fraction
    15·1 answer
  • I'll give brainliest and points to whomever answers these two questions, thank you so much in advance!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!