Given that <span>Line WX is congruent to Line XY and Line XZ bisects Angle WXY.
We prove that triangle WXZ is congruent to triangle YXZ as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] \overline{WX}\cong\overline{XY},\ \overline{XZ}\ bisects\ \angle WXY&Given\\ \angle WXY\cong\angle YXZ & Deifinition of an angle bisector\\ \overline{XZ}\cong\overline{ZX}&Refrexive Property of \cong\\ \triangle WXZ\cong\triangle YXZ&SAS \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0A%5Coverline%7BWX%7D%5Ccong%5Coverline%7BXY%7D%2C%5C%20%5Coverline%7BXZ%7D%5C%20bisects%5C%20%5Cangle%20WXY%26Given%5C%5C%0A%5Cangle%20WXY%5Ccong%5Cangle%20YXZ%20%26%20Deifinition%20of%20an%20angle%20bisector%5C%5C%0A%5Coverline%7BXZ%7D%5Ccong%5Coverline%7BZX%7D%26Refrexive%20Property%20of%20%5Ccong%5C%5C%0A%5Ctriangle%20WXZ%5Ccong%5Ctriangle%20YXZ%26SAS%0A%5Cend%7Btabular%7D)
</span>
Answer: $86.25
Step-by-step explanation:
For this problem, we are given p, r, t.
p=70 (starting amount)
r=0.11 (11%)
t=2 (years)
We can plug this into the equation B=p(1+r)^t
B=70(1+0.11)^2
B=86.247
Sam would have $86.25
Answer:
median = 27
range = 29
mode = 32
maximum value = 41
interquartile range = 21
minimum = 12
upper quartile = 35
mean = 25
lower quartile = 14
Step-by-step explanation:
hope i helped
16.22 divided by 2 = your answer. (8.11)
Because he drove 1542.75 miles in 3 days, you would have to divide 1542.75 by 3 to figure out how many miles he drove in one day.
1542.75/3 = 514.25
Then to figure out how many miles he drove per hour, you would divide 514.25 by 8.5, which is the same as 8 1/2 hours.
514.25/8.5 = 60.5
So the answer is 60.5 mph