1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
13

Find the slope of each of the lines below:

Mathematics
1 answer:
Maru [420]3 years ago
8 0

Answer:

Slope is 3

Step-by-step explanation:

I think it is right! Hope it helps.

You might be interested in
Zabato is thinking of a number. Three times the sum of the number and ten is the same as eight time the number. What is zabato's
9966 [12]

Answer:

Zabato is thinking of 6

Step-by-step explanation:

I first set it up as an equation based on the word problem you have given me

(n + 10)3 = 8n

Distribute the 3

3n + 30 = 8n

Isolate n

3n - 8n +30 - 30 = 8n - 8n - 30

-5n = -30

-5n/-5 = -30/-5

n = 6

To check replace 6 with n

(6 + 10)3 = 8 (6)

(16)3 = 48

48 = 48

5 0
3 years ago
(18)2(3)2(4)3<br> (6)2(2)3
lord [1]

Answer:

Trrvdddctcfc hfrvhjk

Step-by-step explanation:

8 0
3 years ago
Help me with this math question please I'm giving away brainliests​
Lyrx [107]

Answer:the first ans  (f(x)=(1/x+2)+3

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
There are 32 students in a class how many ways can the Class be divided into groups with equal numbers of students are what are
kumpel [21]
They can be divided into

2 groups of 16
4 groups of 8
8 groups of 4
16 groups of 2
3 0
3 years ago
Other questions:
  • Can someone help plz?????????!
    6·2 answers
  • -3v=195<br><br> -45<br> 45<br> 65<br> -65<br> i think it is -45
    13·2 answers
  • Kim works as a salesperson for a photo studio. To find his earnings for the week, he multiples his total sales by 0.175. His sal
    15·1 answer
  • Please help I’m so lost!
    12·2 answers
  • A principle of $12000 was invested into 2 accounts. One account was invested in muni bonds which generated 6% interest rate. The
    6·1 answer
  • Given f(x) = 3 and g(x) = cos(x). What is Limit of left-bracket f (x) minus g (x) right-bracket as x approaches negative pi?
    7·1 answer
  • Kenny wants to wrap his mom's present. Wrapping paper is three cents per square inch. How much will the wrapping paper cost Kenn
    9·1 answer
  • Evaluate the function. Type only the answer.
    15·2 answers
  • I’ll love u forever if u help with this ASAP PLZZZZ what are at least 3 non examples of speed and also for velocity plzzzzz
    15·1 answer
  • if the traingle.is translated using the rule (x,y) -&gt; (x +3,y-5), by how many units and in what direction was the preimage tr
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!