Answer:
Multiple answers
Step-by-step explanation:
The original urns have:
- Urn 1 = 2 red + 4 white = 6 chips
- Urn 2 = 3 red + 1 white = 4 chips
We take one chip from the first urn, so we have:
The probability of take a red one is :
(2 red from 6 chips(2/6=1/2))
For a white one is:
(4 white from 6 chips(4/6=(2/3))
Then we put this chip into the second urn:
We have two possible cases:
- First if the chip we got from the first urn was white. The urn 2 now has 3 red + 2 whites = 5 chips
- Second if the chip we got from the first urn was red. The urn two now has 4 red + 1 white = 5 chips
If we select a chip from the urn two:
- In the first case the probability of taking a white one is of:
= 40% ( 2 whites of 5 chips) - In the second case the probability of taking a white one is of:
= 20% ( 1 whites of 5 chips)
This problem is a dependent event because the final result depends of the first chip we got from the urn 1.
For the fist case we multiply :
x
=
= 26.66% (
the probability of taking a white chip from the urn 1,
the probability of taking a white chip from urn two)
For the second case we multiply:
x
=
= .06% (
the probability of taking a red chip from the urn 1,
the probability of taking a white chip from the urn two)
The answer would be C. (He counted Yolanda's candy as his own).
This is found by multiplying 500 (starting number of candy) and .64 (percentage divided by a hundred). Thjs would guve you 320, which you would then subtract from the starting number of candy (500) to get 180. 180 is Yolanda's number of candy, which gives you the answer.
Hi will read 1,400 pages each day if he reads the book