1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
3 years ago
9

A line represented by y = 2x − 3 and a line perpendicular to it intersect at R(2, 1). What is the equation of the perpendicular

line?
Mathematics
1 answer:
neonofarm [45]3 years ago
8 0

Answer:

y = -1/2x + 2

Step-by-step explanation:

y = 2x - 3. The slope here is 2. A perpendicular line will have a negative reciprocal slope. To find the negative reciprocal, just flip the slope and change the sign.

slope = 2 or 2/1.....flip it.....1/2....change the sign...-1/2. So our perpendicular line will have a slope of -1/2.

y = mx + b

slope(m) = - 1/2

(2,1)....x = 2 and y = 1

now we sub and find b, the y intercept

1 = -1/2(2) + b

1 = -1 + b

1 + 1 = b

2 = b

so ur equation is : y = -1/2x + 2 <===

and u can check it with ur points....(2,1)

y = 2x - 3

1 = 2(2) - 3

1 = 4 - 3

1 = 1 (yep...it checks out)

You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
Please help me... due today
lions [1.4K]
438 has a three in the tens place :)
8 0
3 years ago
Read 2 more answers
Find the value of X so that this quadrilateral is a parallelogram. Then substitute the value of X and using the parallelogram an
Bogdan [553]

Answer:

x = 36

m/A = 132

m/B = 48

m/C = 48

m/D = 132

4 0
4 years ago
Which expressions are equivalent? Select two answers.
professor190 [17]

Answer:

<h2>A, C</h2>

Step-by-step explanation:

The distributive property:

<em>a(b + c) = ab + ac </em>or<em> a(b - c) = ab - ac</em>

<em></em>

A.\\\\\dfrac{1}{5}(x-50)=\dfrac{1}{5}x-\left(\dfrac{1}{5}\right)(50)=\dfrac{1}{5}x-\dfrac{50}{5}=\dfrac{1}{5}x-10\\\\B.\\\\-\dfrac{1}{3}(3x+18)=\left(-\dfrac{1}{3}\right)(3x)+\left(-\dfrac{1}{3}\right)(18)=-\dfrac{3}{3}x-\dfrac{18}{3}=-x-6\\\\-x-6\neq\dfrac{1}{3}x-6

C.\\\\\dfrac{1}{2}(x+16)=\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)(16)=\dfrac{1}{2}x+\dfrac{16}{2}=\dfrac{1}{2}x+8\\\\D.\\\\\dfrac{1}{8}(8x+8)=\left(\dfrac{1}{8}\right)(8x)+\left(\dfrac{1}{8}\right)(8)=\dfrac{8}{8}x+\dfrac{8}{8}=x+1\\\\x+1\neq\dfrac{1}{8}x+1\\\\E.\\\\-\dfrac{1}{4}(x+2)=-\dfrac{1}{4}x+\left(\dfrac{1}{4}\right)(2)=-\dfrac{1}{4}x+\dfrac{2\!\!\!\!\diagup^1}{4\!\!\!\!\!\diagup_2}=-\dfrac{1}{4}x+\dfrac{1}{2}\\\\-\dfrac{1}{4}x+\dfrac{1}{2}\neq-\dfrac{1}{4}x+2

4 0
3 years ago
What is the answer to15 5x4?
lukranit [14]
5*4 is 20 because 5+5+5+5 is 20
6 0
3 years ago
Other questions:
  • Midpoint, slope, and distance for (2,8) and (4,6)
    7·1 answer
  • Does the expression 2b+5b have like terms
    9·1 answer
  • What is 2.4(1.8) as w in algebraic form.
    14·1 answer
  • Suppose a batch of metal shafts produced in a manufacturing company have a variance of 6.256.25 and a mean diameter of 206206 in
    11·1 answer
  • Ted bought four bunches of fennel for $9. How many bunches of fennel can deshawn buy if he had $18
    13·1 answer
  • A playground is rectangular with a length of 1/2 miles. If the area of the playground is 5/8 square miles, what is its width? In
    5·2 answers
  • Which expression matches this algebraic expression after using Distributive
    7·1 answer
  • I really need help with this. Find the equation of the given line:
    13·2 answers
  • Which sets are NOT closed under subtraction? Choose all that apply.
    10·1 answer
  • I don't understand this subject
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!