1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
12

Prove the following integration formula:

Mathematics
2 answers:
horsena [70]3 years ago
7 0

Prove: \displaystyle \int e^a^u sin(bu)\ du = \frac{e^a^u}{a^2+b^2} (a \ sin(bu) - b \ cos(bu)) + C

Integration by parts formula: \displaystyle \int udv = uv - \int vdu

Find u, du, v, and dv for this function: \displaystyle \int e^a^u sin(bu)

  • \displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = -\frac{cos(bu)}{b} \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu) \ du

Plug these values into the IBP formula.

  • \displaystyle \int e^a^u sin(bu) \ du = e^a^u \cdot \frac{-cos(bu)}{b} - \int -\frac{cos(bu)}{b}  \cdot ae^a^u \ du

Multiply and simplify the factors. Factor the negative out of the integral.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} +\int \frac{a \ cos(bu) \ e^a^u}{b}  \ du

Factor out a/b from the integral.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a}{b} \int cos(bu) \ e^a^u \ du

Now we are going to apply IBP to the function: \displaystyle \int cos(bu) \ e^a^u . Find u, du, v, and dv for this function.

  • \displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b} \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu) \ du

Plug these values into the IBP formula.

  • \displaystyle \int e^a^u cos(bu) \ du = e^a^u \cdot \frac{sin(bu)}{b} - \int \frac{sin(bu)}{b}  \cdot ae^a^u \ du

Multiply and simplify the factors.

  • \displaystyle \int e^a^u cos(bu) \ du =  \frac{e^a^u \ sin(bu)}{b} - \int \frac{a \ sin(bu)\ e^a^u}{b}  \ du

Factor out a/b from the integral.

  • \displaystyle \int e^a^u cos(bu) \ du =  \frac{e^a^u \ sin(bu)}{b} - \frac{a}{b} \int sin(bu)\ e^a^u} \ du

Notice that we have the same integral we started with. Let's plug this integral into the original IBP we did.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a}{b} \big{[ }\frac{e^a^u sin(bu)}{b} - \frac{a}{b} \int sin(bu) \ e^a^u \ du \big{]}}

Distribute a/b inside the parentheses.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a \ e^a^u sin(bu)}{b^2} - \frac{a^2}{b^2} \int sin(bu) \ e^a^u \ du

Factor 1/b out of the right side of the equation.

  • \displaystyle \int e^a^u sin(bu) \ du = \frac{1}{b}\big{[} -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} - \frac{a^2}{b} \int sin(bu) \ e^a^u \ du \big{]}

Multiply both sides by b to get rid of 1/b.

  • \displaystyle b \int e^a^u sin(bu) \ du = -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} - \frac{a^2}{b} \int sin(bu) \ e^a^u \ du

Add the integral to both sides of the equation.

  • \displaystyle b \int e^a^u sin(bu) \ du + \frac{a^2}{b} \int sin(bu) \ e^a^u \ du= -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)}

Factor the integral on the left side.

  • \displaystyle \int e^a^u sin(bu) \ du \ \big{(} b + \frac{a^2}{b} \big{)}= -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)}

\displaystyle \big{(}b+\frac{a^2}{b} \big{)} = \frac{b^2+a^2}{b}, so we can multiply both sides of the equation by \displaystyle \frac{b}{a^2+b^2}.

  • \displaystyle \int e^a^u sin(bu) \ du  = -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} \big{(} \frac{b}{a^2+b^2} \big{)}

Simplify the equation before multiplying everything by \displaystyle \frac{b}{a^2+b^2}.

  • \displaystyle \int e^a^u sin(bu) \ du  = \big{(}\frac{-e^a^u cos(bu) \ b + a \ e^a^u sin(bu)}{b} \big{)} \big{(} \frac{b}{a^2+b^2} \big{)}

Multiply the two factors together. Notice that the two b's in the denominator and numerator, respectively, cancel out. We are left with:

  • \displaystyle \int e^a^u sin(bu) \ du  = \big{(}\frac{-e^a^u cos(bu) \ b + a \ e^a^u sin(bu)}{a^2+b^2} \big{)}

Factor \displaystyle e^a^u from the numerator.

  • \displaystyle \int e^a^u sin(bu) \ du  = \big{(}\frac{e^a^u( -b \ cos(bu) \ + a \ sin(bu)}{a^2+b^2} \big{)}

Split the numerator and denominator to make it appear the same as the original question.

  • \displaystyle \int e^a^u sin(bu) \ du  = \frac{e^a^u}{a^2+b^2} \big{(} a \ sin(bu) - b \ cos(bu) \big{)}

Since we are taking the integral of something, we can add a +C at the end to complete the problem.

  • \displaystyle \int e^a^u sin(bu) \ du  = \frac{e^a^u}{a^2+b^2} \big{(} a \ sin(bu) - b \ cos(bu) \big{)} + C

This is equivalent to the proof that we are given, therefore, we proved the integral correctly.

7nadin3 [17]3 years ago
6 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

You might be interested in
david is president of the student council. When the leadership team met for the for the first time he asked each person to shake
WINSTONCH [101]
15 is (hopefully) the correct answer!

3 0
3 years ago
Cafeteria use 637.2 kg of beans to make nine batches of chili what quantity of beans went into each one
SOVA2 [1]

Answer:

70.8 kg

Step-by-step explanation:

This is a division problem.

637.2 kg / 9 = 70.8

Answer: 70.8 kg

6 0
3 years ago
A) Work out the value of (square root of 5)^2 x (square root of 3)^2?
gulaghasi [49]

Answer:

15

Step-by-step explanation:

Square root of 5=√5

Square of the square root=(√5)^2

=5

Square root of 3=√3

Square of the square root=(√3)^2

=3

So (square root of 5)^2×(square root of 3)^2

5×3

15

Therefore the final answer is 15

6 0
3 years ago
(2 12)-3 6)parethesis two plus twelve parethesis subtraction three plus six
ira [324]
You should use Order of Operations or PEDMAS for this (Parenthesis, Exponents, Division and Multiplication in the order they appear, Addition and Subtraction in the order they appear).  So we do the 2+12 because that is in parentheses first which gives 14-3+6.  Next we do 14-3 because there are no exponents and no division or multiplication, which gives 11+6.  This yields your answer, 17.
8 0
3 years ago
John thunderhawk is making furniture he finds that to design a particular cabitnet and set up his shop to produce it cost $1800.
Ugo [173]
9 cabinets is what he must sell
3 0
3 years ago
Read 2 more answers
Other questions:
  • How would I solve this problem? We have to classify the angle pair and find the value of x.
    11·1 answer
  • Help me please thanks
    8·2 answers
  • What is the answer for. What is hg = 45g
    7·1 answer
  • The cost of tuition at a college is $12,000 and is increasing at a rate of 6% per year; 4 years.​
    10·1 answer
  • locate the point on the line segment A (3,-5) and B (13,-15) given that the point is 4/5 of the way from A to B. Show your work
    6·1 answer
  • Is 3.20 greater than,less than, or equal to 3.02
    13·2 answers
  • HELP PLSSSSSSS ILL GIVE YOU BRAINLIST
    10·1 answer
  • What is $281.875 rounded to the nearest tenth?
    14·2 answers
  • Evaluate: 4x + 8 + x -2 -3x when x= 5 ​
    11·2 answers
  • Pls help!!!!!!!!!!!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!