1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
12

Prove the following integration formula:

Mathematics
2 answers:
horsena [70]3 years ago
7 0

Prove: \displaystyle \int e^a^u sin(bu)\ du = \frac{e^a^u}{a^2+b^2} (a \ sin(bu) - b \ cos(bu)) + C

Integration by parts formula: \displaystyle \int udv = uv - \int vdu

Find u, du, v, and dv for this function: \displaystyle \int e^a^u sin(bu)

  • \displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = -\frac{cos(bu)}{b} \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu) \ du

Plug these values into the IBP formula.

  • \displaystyle \int e^a^u sin(bu) \ du = e^a^u \cdot \frac{-cos(bu)}{b} - \int -\frac{cos(bu)}{b}  \cdot ae^a^u \ du

Multiply and simplify the factors. Factor the negative out of the integral.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} +\int \frac{a \ cos(bu) \ e^a^u}{b}  \ du

Factor out a/b from the integral.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a}{b} \int cos(bu) \ e^a^u \ du

Now we are going to apply IBP to the function: \displaystyle \int cos(bu) \ e^a^u . Find u, du, v, and dv for this function.

  • \displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b} \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu) \ du

Plug these values into the IBP formula.

  • \displaystyle \int e^a^u cos(bu) \ du = e^a^u \cdot \frac{sin(bu)}{b} - \int \frac{sin(bu)}{b}  \cdot ae^a^u \ du

Multiply and simplify the factors.

  • \displaystyle \int e^a^u cos(bu) \ du =  \frac{e^a^u \ sin(bu)}{b} - \int \frac{a \ sin(bu)\ e^a^u}{b}  \ du

Factor out a/b from the integral.

  • \displaystyle \int e^a^u cos(bu) \ du =  \frac{e^a^u \ sin(bu)}{b} - \frac{a}{b} \int sin(bu)\ e^a^u} \ du

Notice that we have the same integral we started with. Let's plug this integral into the original IBP we did.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a}{b} \big{[ }\frac{e^a^u sin(bu)}{b} - \frac{a}{b} \int sin(bu) \ e^a^u \ du \big{]}}

Distribute a/b inside the parentheses.

  • \displaystyle \int e^a^u sin(bu) \ du = -\frac{e^a^u cos(bu)}{b} + \frac{a \ e^a^u sin(bu)}{b^2} - \frac{a^2}{b^2} \int sin(bu) \ e^a^u \ du

Factor 1/b out of the right side of the equation.

  • \displaystyle \int e^a^u sin(bu) \ du = \frac{1}{b}\big{[} -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} - \frac{a^2}{b} \int sin(bu) \ e^a^u \ du \big{]}

Multiply both sides by b to get rid of 1/b.

  • \displaystyle b \int e^a^u sin(bu) \ du = -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} - \frac{a^2}{b} \int sin(bu) \ e^a^u \ du

Add the integral to both sides of the equation.

  • \displaystyle b \int e^a^u sin(bu) \ du + \frac{a^2}{b} \int sin(bu) \ e^a^u \ du= -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)}

Factor the integral on the left side.

  • \displaystyle \int e^a^u sin(bu) \ du \ \big{(} b + \frac{a^2}{b} \big{)}= -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)}

\displaystyle \big{(}b+\frac{a^2}{b} \big{)} = \frac{b^2+a^2}{b}, so we can multiply both sides of the equation by \displaystyle \frac{b}{a^2+b^2}.

  • \displaystyle \int e^a^u sin(bu) \ du  = -e^a^u cos(bu)+ a \big{(}\frac{e^a^u sin(bu)}{b} \big{)} \big{(} \frac{b}{a^2+b^2} \big{)}

Simplify the equation before multiplying everything by \displaystyle \frac{b}{a^2+b^2}.

  • \displaystyle \int e^a^u sin(bu) \ du  = \big{(}\frac{-e^a^u cos(bu) \ b + a \ e^a^u sin(bu)}{b} \big{)} \big{(} \frac{b}{a^2+b^2} \big{)}

Multiply the two factors together. Notice that the two b's in the denominator and numerator, respectively, cancel out. We are left with:

  • \displaystyle \int e^a^u sin(bu) \ du  = \big{(}\frac{-e^a^u cos(bu) \ b + a \ e^a^u sin(bu)}{a^2+b^2} \big{)}

Factor \displaystyle e^a^u from the numerator.

  • \displaystyle \int e^a^u sin(bu) \ du  = \big{(}\frac{e^a^u( -b \ cos(bu) \ + a \ sin(bu)}{a^2+b^2} \big{)}

Split the numerator and denominator to make it appear the same as the original question.

  • \displaystyle \int e^a^u sin(bu) \ du  = \frac{e^a^u}{a^2+b^2} \big{(} a \ sin(bu) - b \ cos(bu) \big{)}

Since we are taking the integral of something, we can add a +C at the end to complete the problem.

  • \displaystyle \int e^a^u sin(bu) \ du  = \frac{e^a^u}{a^2+b^2} \big{(} a \ sin(bu) - b \ cos(bu) \big{)} + C

This is equivalent to the proof that we are given, therefore, we proved the integral correctly.

7nadin3 [17]3 years ago
6 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

You might be interested in
I need the answer for this asp.
TEA [102]

Answer:

This is Isosceles Right

Step-by-step explanation:

An Isosceles is a triangle that has two sides the same length and one side longer or shorter

An Right is an triangle with a 90˚

Hope this helps!

3 0
3 years ago
Read 2 more answers
In the diagram provided, line I is parallel to line m. Select which of the following statements could be used to prove that
atroni [7]
<h3>Answer: There is only one answer and it is choice B</h3><h3>Angle 1 and angle 4 are alternate interior angles</h3>

========================================================

Explanation

  • A. This is false because it should be angle 4 + angle 5 = 180 without the angle 6. Adding on angle 6 results in some angle larger than 180. Note how angle 5 = (angle 3)+(angle 6).
  • B. This is true and useful to showing that the three angles of a triangle add to 180 degrees. This is because you'll use the fact that angles 4, 5 and 6 combine to 180 degrees.
  • C. While this is a true statement by the exterior angle theorem, it is not useful to the proof. It is better to state that angle 2 and angle 6 are congruent because they are alternate interior angles.
  • D. Like choice C, it is true but not useful. It's better to say that angle 1 is congruent to angle 4. See choice B above.

Note how it's not enough for a statement to be true. It also needs to be relevant or useful to the context at hand. A more simpler example of this could be stating that x+x = 2x.

8 0
3 years ago
Given that 5W = 2P + 3R find the value of P when W = 4 and R = −4
Olenka [21]

Answer:

P = 16

Step-by-step explanation:

Given

5W = 2P + 3R ← substitute W = 4 and R = - 4 into the equation

5(4) = 2P + 3(- 4), that is

20 = 2P - 12 ( add 12 to both sides )

32 = 2P ( divide both sides by 2 )

16 = P

5 0
3 years ago
Help I don’t know the steps
Korvikt [17]

Answer:

down below

Step-by-step explanation:

straight lines are 180 degrees and you have 2 angles on a line. one of which is 72 and the other is unknown. It is solved for below.

180=72+x\\180-72=72+x-72\\108=x

your missing degree is 108.

i may not be right, if i'm not i am very sorry.

7 0
3 years ago
Divide £ 45 among 3 person so that their share are in the ratio 4:5:6
NISA [10]

Answer:

12, 15, 18

Step-by-step explanation:

4x+5x+6x=45

15x=45

x=3

4x=12, 5x=15, 6x= 18

6 0
3 years ago
Other questions:
  • Graph the function in the interval from 0 to 2pi.<br><br> y = sin(θ − 2)
    14·2 answers
  • A forest ranger sights a fire directly to the south. A second​ ranger, 7 miles east of the first​ ranger, also sights the fire.
    14·1 answer
  • Identify the coordinates of point A after a translation with rule
    10·2 answers
  • Triangle ADE is similar to triangle ABC. Which statement is TRUE concerning the slope of the line formed by the hypotenuse of ea
    13·1 answer
  • The local deli sells cheese wheels. Each cheese wheel is a cylinder. The height of the cheese wheel is 2.8 inches and the volume
    12·2 answers
  • Passes through (-5,-9) and has a slope of -17/5
    11·1 answer
  • What is 9962 divided by 41
    5·1 answer
  • Given that points A, B, and C are the midpoints of their respective sides, which of the following is true about the figure? ANSW
    13·1 answer
  • If a &lt; 0 then the graph opens_____​
    12·2 answers
  • Please answer!!! Will mark brainiest!!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!