A square rotated about its center by 360º maps onto itself at 4 different angles of rotation. You can reflect a square onto itself across 4 different lines of reflection.
ummmm it could be third one i guesss
Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![m^2e^{mt}+10me^{mt}+25e^{mt}=0\\\\\Rightarrow (m^2+10y+25)e^{mt}=0\\\\\Rightarrow m^2+10m+25=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow m^2+2\times m\times5+5^2=0\\\\\Rightarrow (m+5)^2=0\\\\\Rightarrow m=-5,-5.](https://tex.z-dn.net/?f=m%5E2e%5E%7Bmt%7D%2B10me%5E%7Bmt%7D%2B25e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%5E2%2B10y%2B25%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B10m%2B25%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B2%5Ctimes%20m%5Ctimes5%2B5%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B5%29%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-5%2C-5.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and

Thus, the required solution is

You would be concluding that <span>the populations from which our samples come are different. I hope this helps.</span>