The <u>control class</u> acts as a switchboard between the view layer and the domain layer.
Explanation:
As the name suggests, the control class is responsible for performing the control actions. The view layer defines the entities and attributes which have to be viewed and their structural organization.
The domain layer consists of all the entities, attributes, and relations in the data. The control class controls the flow of information between the two layers and performs the operations of filtering and selecting the content to be displayed.
$4 x number of visits (V)> price of membership (M)
V > M/4
Answer:An initial condition is an extra bit of information about a differential equation that tells you the value of the function at a particular point. Differential equations with initial conditions are commonly called initial value problems.
The video above uses the example
{
d
y
d
x
=
cos
(
x
)
y
(
0
)
=
−
1
to illustrate a simple initial value problem. Solving the differential equation without the initial condition gives you
y
=
sin
(
x
)
+
C
.
Once you get the general solution, you can use the initial value to find a particular solution which satisfies the problem. In this case, plugging in
0
for
x
and
−
1
for
y
gives us
−
1
=
C
, meaning that the particular solution must be
y
=
sin
(
x
)
−
1
.
So the general way to solve initial value problems is: - First, find the general solution while ignoring the initial condition. - Then, use the initial condition to plug in values and find a particular solution.
Two additional things to keep in mind: First, the initial value doesn't necessarily have to just be
y
-values. Higher-order equations might have an initial value for both
y
and
y
′
, for example.
Second, an initial value problem doesn't always have a unique solution. It's possible for an initial value problem to have multiple solutions, or even no solution at all.
Explanation:
Answer:
// code in C++
#include <bits/stdc++.h>
using namespace std;
// main function
int main()
{
// variables
int sum_even=0,sum_odd=0,eve_count=0,odd_count=0;
int largest=INT_MIN;
int smallest=INT_MAX;
int n;
cout<<"Enter 10 Integers:";
// read 10 Integers
for(int a=0;a<10;a++)
{
cin>>n;
// find largest
if(n>largest)
largest=n;
// find smallest
if(n<smallest)
smallest=n;
// if input is even
if(n%2==0)
{
// sum of even
sum_even+=n;
// even count
eve_count++;
}
else
{
// sum of odd
sum_odd+=n;
// odd count
odd_count++;
}
}
// print sum of even
cout<<"Sum of all even numbers is: "<<sum_even<<endl;
// print sum of odd
cout<<"Sum of all odd numbers is: "<<sum_odd<<endl;
// print largest
cout<<"largest Integer is: "<<largest<<endl;
// print smallest
cout<<"smallest Integer is: "<<smallest<<endl;
// print even count
cout<<"count of even number is: "<<eve_count<<endl;
// print odd cout
cout<<"count of odd number is: "<<odd_count<<endl;
return 0;
}
Explanation:
Read an integer from user.If the input is greater that largest then update the largest.If the input is smaller than smallest then update the smallest.Then check if input is even then add it to sum_even and increment the eve_count.If the input is odd then add it to sum_odd and increment the odd_count.Repeat this for 10 inputs. Then print sum of all even inputs, sum of all odd inputs, largest among all, smallest among all, count of even inputs and count of odd inputs.
Output:
Enter 10 Integers:1 3 4 2 10 11 12 44 5 20
Sum of all even numbers is: 92
Sum of all odd numbers is: 20
largest Integer is: 44
smallest Integer is: 1
count of even number is: 6
count of odd number is: 4