Answer:
The system is consistent; it has one solution ⇒ D
Step-by-step explanation:
A consistent system of equations has at least one solution
- The consistent independent system has exactly 1 solution
- The consistent dependent system has infinitely many solutions
An inconsistent system has no solution
In the system of equations ax + by = c and dx + ey = f, if
- a = d, b = e, and c = f, then the system is consistent dependent and has infinitely many solutions
- a = d, b = e, and c ≠ f, then the system is inconsistent and has no solution
- a ≠ d, and/or b ≠ e, and/or c ≠ f, then the system is consistent independent and has exactly one solution
In the given system of equations
∵ -2y + 2x = 3 ⇒ (1)
∵ -5y + 5x = 12 ⇒ (2)
→ By comparing equations (1) and (2)
∵ -2 ≠ -5
∵ 2 ≠ 5
∵ 3 ≠ 12
→ By using the 3rd rule above
∴ The system is consistent independent and has exactly one solution
∴ The system is consistent; it has one solution
As is the case for any polynomial, the domain of this one is (-infinity, +infinity).
To find the range, we need to determine the minimum value that f(x) can have. The coefficients here are a=2, b=6 and c = 2,
The x-coordinate of the vertex is x = -b/(2a), which here is x = -6/4 = -3/2.
Evaluate the function at x = 3/2 to find the y-coordinate of the vertex, which is also the smallest value the function can take on. That happens to be y = -5/2, so the range is [-5/2, infinity).
The answer is y= 3/4x - 4.
Answer: 16%
Step-by-step explanation:
168.2 - 145 = 23.2
23.2/145 = 0.16
0.16 as a percent is 16%
Answer:
Step-by-step explanation:
Easy way to do this is step by step. Your quadratic, from your entry, must be
.
Step by step looks like this, one thing at a time:
becomes
becomes

and this of course is

Do the same with the subtraction sign to get the other solution.
If you're unsure of how to enter it into your calculator, do it step by step so you don't mess up the sign. If you enter it incorrectly, you could end up with an imaginary number when it should be real, or a real one that should be imaginary.
Just my advice as a high school math teacher.